TY - JOUR A1 - Rösch, Moritz A1 - Plank, Simon T1 - Detailed mapping of lava and ash deposits at Indonesian volcanoes by means of VHR PlanetScope change detection JF - Remote Sensing N2 - Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis). KW - lava KW - volcanoes KW - PlanetScope KW - change detection KW - object-based image analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262232 SN - 2072-4292 VL - 14 IS - 5 ER - TY - JOUR A1 - Dech, Stefan A1 - Holzwarth, Stefanie A1 - Asam, Sarah A1 - Andresen, Thorsten A1 - Bachmann, Martin A1 - Boettcher, Martin A1 - Dietz, Andreas A1 - Eisfelder, Christina A1 - Frey, Corinne A1 - Gesell, Gerhard A1 - Gessner, Ursula A1 - Hirner, Andreas A1 - Hofmann, Matthias A1 - Kirches, Grit A1 - Klein, Doris A1 - Klein, Igor A1 - Kraus, Tanja A1 - Krause, Detmar A1 - Plank, Simon A1 - Popp, Thomas A1 - Reinermann, Sophie A1 - Reiners, Philipp A1 - Roessler, Sebastian A1 - Ruppert, Thomas A1 - Scherbachenko, Alexander A1 - Vignesh, Ranjitha A1 - Wolfmueller, Meinhard A1 - Zwenzner, Hendrik A1 - Kuenzer, Claudia T1 - Potential and challenges of harmonizing 40 years of AVHRR data: the TIMELINE experience JF - Remote Sensing N2 - Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper. KW - AVHRR KW - Earth Observation KW - harmonization KW - time series analysis KW - climate related trends KW - automatic processing KW - Europe KW - TIMELINE Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246134 SN - 2072-4292 VL - 13 IS - 18 ER -