TY - THES A1 - Sivarajan, Rinu T1 - Engineered Human Airway Mucosa for Modelling Respiratory Infections: Characterisation and Applications T1 - Gewebemodelle der humanen Atemwegsschleimhaut für Infektionsstudien der Atemwege: Charakterisierung und Anwendungen N2 - Respiratory infections are a significant health concern worldwide, and the airway epithelium plays a crucial role in regulating airway function and modulating inflammatory processes. However, most studies on respiratory infections have used cell lines or animal models, which may not accurately reflect native physiological conditions, especially regarding human pathogens. We generated human nasal mucosa (hNM) and tracheobronchial mucosa (hTM) models to address this issue using primary human airway epithelial cells and fibroblasts. We characterised these human airway tissue models (hAM) using high speed video microscopy, single cell RNA sequencing, immunofluorescence staining, and ultrastructural analyses that revealed their complexity and cellular heterogeneity. We demonstrated that Bordetella pertussis virulence factor adenylate cyclase toxin (CyaA) elevated the intracellular production of cyclic adenosine monophosphate (cAMP) and secretion of interleukin (IL) 6, IL 8, and human beta defensin 2 (HBD2). In addition, we compared the responses of the tissue models from two different anatomical sites (the upper and lower respiratory mucosa) and are the first to report such differential susceptibility towards CyaA using 3D primary airway cell derivedmodels. The effect of toxin treatment on the epithelial barrier integrity of the tissue models was assessed by measuring the flux of fluorescein isothiocyanate (FITC)-conjugated dextran across the models. Though we observed a cell type specific response with respect to intracellular cAMP production and IL 6, IL 8, and HBD2 secretion in the models treated with CyaA on the apical side, the epithelial membrane barrier integrity was not compromised. In addition to toxin studies, using these characterised models, we established viral infection studies for Influenza A (IAV), Respiratory Syncytial Virus subtype B (RSV), and severe acute respiratory syndrome coronavirus 2. We visualised the morphological consequences of the viral infection using ultrastructural analysis and immunofluorescence. We verified the effective infection in hAM by measuring the viral RNA using RTqPCR and detected elevated cytokine levels in response to infection using biochemical assays. In contrast to cell lines, studies on viral infection using hAM demonstrated that infected areas were localized to specific regions. This led to the formation of infection hotspots, which were more likely to occur when models derived from different donors were infected separately with all three viruses. IAV infected tissue models replicate the clinical findings of H1N1 infection, such as mucus hypersecretion, cytokine release, and infection-associated epithelial cell damage.Finally, we paved the steps towards understanding the impact of IAV infection on disease models. We generated hTM from biopsies obtained from chronic obstructive pulmonary disease (COPD) patients. As a model to study the impact of COPD on respiratory infections, considering the increase in COPD cases in the past decade and the continued predicted increase in the future. We established the IAV infection protocol to capture the early infection signatures in non-COPD and COPD conditions using scRNA-seq. We investigated the infection kinetics of IAV (H1N1-clinical isolate) in hTM and found that viruses were actively released approximately 24 hours post infection. The scRNA-seq data from the hTM derived from non-COPD and COPD patients, revealed lower levels of SCGB1A1 (club cell marker) gene expression in the COPD-control group compared to the non-COPD control group, consistent with previous clinical studies. Furthermore, we observed that IAV infection elevated SCGB1A1 gene expression especially in secretory cells of both the COPD and non COPD groups. This may imply the role of club cells as early responders during IAV infection providing epithelial repair, regeneration, and resistance to spread of infection. This is the first study to address the molecular diversity in COPD and non-COPD disease models infected with IAV investigating the early response (6 h) of specific cell types in the human lower airways towards infection using scRNA-seq. These findings highlight the potential interplay between COPD, IAV infection, and altered vulnerability to other viral infections and respiratory illnesses making the hAM applicable for addressing more specific research questions and validating potential targets, such as SCGB1A1 targeted therapy for chronic lung diseases. Our findings demonstrate the potential of the hNM and hTM for investigating respiratory infections, innate immune responses, and trained immunity in non-immune cells. Our experiments show that hAM may represent a more accurate representation of the native physiological condition and improve our understanding of the disease mechanisms. Furthermore, these models promote non-animal research as they replicate clinical findings. We can further increase their complexity by incorporating dynamic flow systems and immune cells catered to the research question. N2 - Infektionen der Atemwege stellen weltweit ein erhebliches Gesundheitsproblem dar, und das Epithel der Atemwege spielt eine entscheidende Rolle bei der Regulierung der Atemwegsfunktion und der Steuerung von Entzündungsprozessen. In den meisten Studien zu Atemwegsinfektionen wurden jedoch Zelllinien oder Tiermodelle verwendet, die die natürlichen physiologischen Bedingungen nicht genau widerspiegeln, insbesondere im Hinblick auf menschliche Krankheitserreger. Wir haben Modelle der menschlichen Nasenschleimhaut (hNM) und der Tracheobronchialschleimhaut (hTM) entwickelt, um dieses Problem mit primären menschlichen Epithelzellen und Fibroblasten der Atemwege zu lösen. Wir charakterisierten diese humanen Atemwegsgewebemodelle (hAM) mithilfe von Hochgeschwindigkeits-Videomikroskopie, Einzelzell-RNA-Sequenzierung (scRNA- seq), Immunfluoreszenzfärbung und ultrastrukturellen Analysen, die ihre Komplexität und zelluläre Heterogenität offenlegten. Wir konnten zeigen, dass der Virulenzfaktor Adenylatzyklasetoxin (CyaA) von Bordetella pertussis die intrazelluläre Produktion von zyklischem Adenosinmonophosphat (cAMP) und die Sekretion von Interleukin (IL)-6, IL-8 und humanem Beta-Defensin-2 (HBD-2) erhöht. Darüber hinaus verglichen wir die Reaktionen der Gewebemodelle aus zwei verschiedenen anatomischen Bereichen (obere und untere Atemwegsschleimhaut) und sind die ersten, die eine solche unterschiedliche Empfindlichkeit gegenüber CyaA anhand von 3D-Modellen aus Atemwegsprimärzellen berichten. Die Auswirkung der Toxinbehandlung auf die epitheliale Barriereintegrität der Gewebemodelle wurde durch Messung des Flusses von Fluorescein-Isothiocyanat (FITC)-konjugiertem Dextran durch die Modelle ermittelt. Obwohl wir eine zelltypspezifische Reaktion in Bezug auf die intrazelluläre cAMP-Produktion und die Sekretion von IL-6, IL-8 und HBD-2 in den mit CyaA behandelten Modellen auf der apikalen Seite beobachteten, war die Integrität der Epithelmembranbarriere nicht beeinträchtigt. Anhand dieser gut charakterisierten Modelle haben wir Virusinfektionsstudien für Influenza A (IAV), das respiratorische Synzytialvirus Subtyp B (RSV) und das schwere akute respiratorische Syndrom Coronavirus 2 (SARS-CoV-2) durchgeführt. Wir haben die morphologischen Folgen der Virusinfektion mithilfe von Ultrastrukturanalysen und Immunfluoreszenz sichtbar gemacht. Wir verifizierten die effektive Infektion in hAM durch Messung der viralen RNA mittels RT-qPCR und wiesen erhöhte IL-6- und IL-8- Spiegel als Reaktion auf die Infektion mittels biochemischer Assays nach. Im Gegensatz zu Zelllinien zeigten die Virusinfektionsstudien mit hAM, dass die infizierten Bereiche auf bestimmte Regionen beschränkt waren, was zu Infektions-Hotspots führte, die eher bei Modellen auftraten, die von verschiedenen Spendern stammten und mit allen drei Viren separat infiziert waren. IAV-infizierte Gewebemodelle replizieren die klinischen Befunde einer H1N1-Infektion, wie beispielsweise Schleimhypersekretion, Zytokinfreisetzung und infektionsassoziierte Epithelzellschäden. Schließlich haben wir die Auswirkungen einer IAV-Infektion auf Krankheitsmodelle untersucht. Dazu haben wir hTM aus Biopsien von Patienten mit chronisch obstruktiver Lungenerkrankung (COPD) isoliert. In Anbetracht der Zunahme an COPD-Fällen in den letzten zehn Jahren und der prognostizierten weiteren Zunahme in der Zukunft dient dies als Modell zur Untersuchung der Auswirkungen von COPD auf Atemwegsinfektionen. Wir erstellten ein IAV-Infektionsprotokoll, um die frühen Infektionssignaturen bei nicht-COPD- und COPD-Patienten mit Hilfe von scRNA-seq zu erfassen. Bei der untersuchten der Infektionskinetiken von IAV (klinisches H1N1- Isolat) in hTM stellten wir fest, dass die Viren etwa 24 Stunden nach der Infektion aktiv freigesetzt wurden. Die scRNA-seq-Daten von hTM, zeigten eine geringere Genexpression von SCGB1A1 (Clubzellmarker) in der COPD-Kontrollgruppe verglichen mit der nicht-COPD-Kontrollgruppe, was mit früheren klinischen Studien übereinstimmt. Darüber hinaus stellten wir fest, dass eine IAV-Infektion die SCGB1A1- Genexpression insbesondere in den sekretorischen Zellen beider Gruppen erhöhte. Dies könnte darauf hindeuten, dass Keimzellen während einer IAV-Infektion früh aktiviert werden und damit eventuell für die Reparatur und Regeneration des Epithels sorgen sowie der Ausbreitung der Infektion entgegenwirken. Hierbei handelt es sich um die erste Studie, die sich mit der molekularen Vielfalt in mit IAV infizierten COPD- und nicht-COPD-Modellen befasst und dabei ein besonderes Augenmerk auf die frühe Reaktion (6 Stunden) spezifischer Zelltypen der unteren Atemwege legt und diese mittels scRNA-seq untersucht. Diese Ergebnisse unterstreichen das potenzielle Zusammenspiel zwischen COPD, IAV-Infektion und der Anfälligkeit für andere Virusinfektionen sowie anderer Atemwegserkrankungen. Das zeight, dass die hAM für die Beantwortung spezifischerer Forschungsfragen und die Validierung potenzieller Zielstrukturen, wie z. B. einer gezielten SCGB1A1-Therapie für chronische Lungenerkrankungen, geeignet sind. Unsere Ergebnisse zeigen das Potenzial von hNM und hTM für die Untersuchung von Atemwegsinfektionen, angeborenen Immunreaktionen und ausgebildeter Immunität in nicht-immunen Zellen. Mit unseren Experimenten haben wir gezeigt, dass hAM eine genauere Darstellung des natürlichen physiologischen Zustands darstellen und unser Verständnis der Krankheitsmechanismen verbessern kann. Darüber hinaus könnten diese Modelle die Forschung ohne Tierversuche fördern, da sie dazu neigen, klinische Befunde zu replizieren. Wir können ihre Komplexität weiter erhöhen, indem wir dynamische Strömungssysteme und auf die Forschungsfrage abgestimmte Immunzellen einbeziehen. KW - Atemwege KW - Gewebemodelle KW - Atemwegsschleimhaut KW - Infektionsstudien Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322414 ER - TY - JOUR A1 - Sivarajan, Rinu A1 - Oberwinkler, Heike A1 - Roll, Valeria A1 - König, Eva-Maria A1 - Steinke, Maria A1 - Bodem, Jochen T1 - A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses JF - BMC Complementary Medicine and Therapies N2 - Background Anthocyanin-containing plant extracts and carotenoids, such as astaxanthin, have been well-known for their antiviral and anti-inflammatory activity, respectively. We hypothesised that a mixture of Ribes nigrum L. (Grossulariaceae) (common name black currant (BC)) and Vaccinium myrtillus L. (Ericaceae) (common name bilberry (BL)) extracts (BC/BL) with standardised anthocyanin content as well as single plant extracts interfered with the replication of Measles virus and Herpesviruses in vitro. Methods We treated cell cultures with BC/BL or defined single plant extracts, purified anthocyanins and astaxanthin in different concentrations and subsequently infected the cultures with the Measles virus (wild-type or vaccine strain Edmonston), Herpesvirus 1 or 8, or murine Cytomegalovirus. Then, we analysed the number of infected cells and viral infectivity and compared the data to non-treated controls. Results The BC/BL extract inhibited wild-type Measles virus replication, syncytia formation and cell-to-cell spread. This suppression was dependent on the wild-type virus-receptor-interaction since the Measles vaccine strain was unaffected by BC/BL treatment. Furthermore, the evidence was provided that the delphinidin-3-rutinoside chloride, a component of BC/BL, and purified astaxanthin, were effective anti-Measles virus compounds. Human Herpesvirus 1 and murine Cytomegalovirus replication was inhibited by BC/BL, single bilberry or black currant extracts, and the BC/BL component delphinidin-3-glucoside chloride. Additionally, we observed that BC/BL seemed to act synergistically with aciclovir. Moreover, BC/BL, the single bilberry and black currant extracts, and the BC/BL components delphinidin-3-glucoside chloride, cyanidin-3-glucoside, delphinidin-3-rutinoside chloride, and petunidin-3-galactoside inhibited human Herpesvirus 8 replication. Conclusions Our data indicate that Measles viruses and Herpesviruses are differentially susceptible to a specific BC/BL mixture, single plant extracts, purified anthocyanins and astaxanthin. These compounds might be used in the prevention of viral diseases and in addition to direct-acting antivirals, such as aciclovir. KW - anthocyanin KW - astaxanthin KW - bilberry KW - black currant KW - herpesvirus KW - measels virus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301423 VL - 22 ER - TY - JOUR A1 - Sivarajan, Rinu A1 - Kessie, David Komla A1 - Oberwinkler, Heike A1 - Pallmann, Niklas A1 - Walles, Thorsten A1 - Scherzad, Agmal A1 - Hackenberg, Stephan A1 - Steinke, Maria T1 - Susceptibility of Human Airway Tissue Models Derived From Different Anatomical Sites to Bordetella pertussis and Its Virulence Factor Adenylate Cyclase Toxin JF - Frontiers in Cellular and Infection Microbiology N2 - To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC\(^-\). Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens. KW - human nasal epithelial cells KW - human tracheo-bronchial epithelial cells KW - human airway mucosa tissue models KW - adenylate cyclase toxin KW - Bordetella pertussis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253302 SN - 2235-2988 VL - 11 ER - TY - JOUR A1 - Bianchi, Maria A1 - Sivarajan, Rinu A1 - Walles, Thorsten A1 - Hackenberg, Stephan A1 - Steinke, Maria T1 - Susceptibility of primary human airway epithelial cells to Bordetella pertussis adenylate cyclase toxin in two- and three-dimensional culture conditions JF - Innate Immunity N2 - The human pathogen Bordetella pertussis targets the respiratory epithelium and causes whooping cough. Its virulence factor adenylate cyclase toxin (CyaA) plays an important role in the course of infection. Previous studies on the impact of CyaA on human epithelial cells have been carried out using cell lines derived from the airways or the intestinal tract. Here, we investigated the interaction of CyaA and its enzymatically inactive but fully pore-forming toxoid CyaA-AC– with primary human airway epithelial cells (hAEC) derived from different anatomical sites (nose and tracheo-bronchial region) in two-dimensional culture conditions. To assess possible differences between the response of primary hAEC and respiratory cell lines directly, we included HBEC3-KT in our studies. In comparative analyses, we studied the impact of both the toxin and the toxoid on cell viability, intracellular cAMP concentration and IL-6 secretion. We found that the selected hAEC, which lack CD11b, were differentially susceptible to both CyaA and CyaA-AC–. HBEC3-KT appeared not to be suitable for subsequent analyses. Since the nasal epithelium first gets in contact with airborne pathogens, we further studied the effect of CyaA and its toxoid on the innate immunity of three-dimensional tissue models of the human nasal mucosa. The present study reveals first insights in toxin–cell interaction using primary hAEC. KW - Adenylate cyclase toxin KW - cyclic adenosine monophosphate KW - human respiratory epithelial cells KW - IL-6 KW - Bordetella pertussis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219849 SN - 1753-4259 SN - 1753-4267 VL - 27 IS - 1 SP - 89-98 ER -