TY - JOUR A1 - Cavaletto, Giacomo A1 - Faccoli, Massimo A1 - Marini, Lorenzo A1 - Spaethe, Johannes A1 - Magnani, Gianluca A1 - Rassati, Davide T1 - Effect of trap color on captures of bark- and wood-boring beetles (Coleoptera; Buprestidae and Scolytinae) and associated predators JF - Insects N2 - Traps baited with attractive lures are increasingly used at entry-points and surrounding natural areas to intercept exotic wood-boring beetles accidentally introduced via international trade. Several trapping variables can affect the efficacy of this activity, including trap color. In this study, we tested whether species richness and abundance of jewel beetles (Buprestidae), bark and ambrosia beetles (Scolytinae), and their common predators (i.e., checkered beetles, Cleridae) can be modified using trap colors different to those currently used for surveillance of jewel beetles and bark and ambrosia beetles (i.e., green or black). We show that green and black traps are generally efficient, but also that many flower-visiting or dark-metallic colored jewel beetles and certain bark beetles are more attracted by other colors. In addition, we show that checkered beetles have color preferences similar to those of their Scolytinae preys, which limits using trap color to minimize their inadvertent removal. Overall, this study confirmed that understanding the color perception mechanisms in wood-boring beetles can lead to important improvements in trapping techniques and thereby increase the efficacy of surveillance programs. KW - ambrosia beetles KW - baited traps KW - bark beetles KW - biosecurity KW - checkered beetles KW - forest pests KW - insect vision KW - jewel beetles KW - surveillance Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216325 SN - 2075-4450 VL - 11 IS - 11 ER - TY - JOUR A1 - Leonhardt, Sara D. A1 - Lihoreau, Mathieu A1 - Spaethe, Johannes T1 - Mechanisms of nutritional resource exploitation by insects JF - Insects N2 - Insects have evolved an extraordinary range of nutritional adaptations to exploit other animals, plants, bacteria, fungi and soils as resources in terrestrial and aquatic environments. This special issue provides some new insights into the mechanisms underlying these adaptations. Contributions comprise lab and field studies investigating the chemical, physiological, cognitive and behavioral mechanisms that enable resource exploitation and nutrient intake regulation in insects. The collection of papers highlights the need for more studies on the comparative sensory ecology, underlying nutritional quality assessment, cue perception and decision making to fully understand how insects adjust resource selection and exploitation in response to environmental heterogeneity and variability. KW - nutritional adaptations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211161 SN - 2075-4450 VL - 11 IS - 9 ER - TY - JOUR A1 - Grund-Mueller, Nils A1 - Ruedenauer, Fabian A. A1 - Spaethe, Johannes A1 - Leonhardt, Sara D. T1 - Adding amino acids to a sucrose diet is not sufficient to support longevity of adult bumble bees JF - Insects N2 - Dietary macro-nutrients (i.e., carbohydrates, protein, and fat) are important for bee larval development and, thus, colony health and fitness. To which extent different diets (varying in macro-nutrient composition) affect adult bees and whether they can thrive on nectar as the sole amino acid source has, however, been little investigated. We investigated how diets varying in protein concentration and overall nutrient composition affected consumption, longevity, and breeding behavior of the buff-tailed bumble bee, Bombus terrestris (Hymenoptera: Apidae). Queenless micro-colonies were fed either natural nutrient sources (pollen), nearly pure protein (i.e., the milk protein casein), or sucrose solutions with low and with high essential amino acid content in concentrations as can be found in nectar. We observed micro-colonies for 110 days. We found that longevity was highest for pure pollen and lowest for pure sucrose solution and sucrose solution supplemented with amino acids in concentrations as found in the nectar of several plant species. Adding higher concentrations of amino acids to sucrose solution did only slightly increase longevity compared to sucrose alone. Consequently, sucrose solution with the applied concentrations and proportions of amino acids or other protein sources (e.g., casein) alone did not meet the nutritional needs of healthy adult bumble bees. In fact, longevity was highest and reproduction only successful in micro-colonies fed pollen. These results indicate that, in addition to carbohydrates and protein, adult bumble bees, like larvae, need further nutrients (e.g., lipids and micro-nutrients) for their well-being. An appropriate nutritional composition seemed to be best provided by floral pollen, suggesting that pollen is an essential dietary component not only for larvae but also for adult bees. KW - nutrition KW - nutrients KW - foraging KW - pollen KW - resources KW - adult bees Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203866 SN - 2075-4450 VL - 11 IS - 4 ER - TY - JOUR A1 - Ruedenauer, Fabian A. A1 - Raubenheimer, David A1 - Kessner-Beierlein, Daniela A1 - Grund-Mueller, Nils A1 - Noack, Lisa A1 - Spaethe, Johannes A1 - Leonhardt, Sara D. T1 - Best be(e) on low fat: linking nutrient perception, regulation and fitness JF - Ecology Letters N2 - Preventing malnutrition through consuming nutritionally appropriate resources represents a challenge for foraging animals. This is due to often high variation in the nutritional quality of available resources. Foragers consequently need to evaluate different food sources. However, even the same food source can provide a plethora of nutritional and non‐nutritional cues, which could serve for quality assessment. We show that bumblebees, Bombus terrestris , overcome this challenge by relying on lipids as nutritional cue when selecting pollen. The bees ‘prioritised’ lipid perception in learning experiments and avoided lipid consumption in feeding experiments, which supported survival and reproduction. In contrast, survival and reproduction were severely reduced by increased lipid contents. Our study highlights the importance of fat regulation for pollen foraging bumblebees. It also reveals that nutrient perception, nutrient regulation and reproductive fitness can be linked, which represents an effective strategy enabling quick foraging decisions that prevent malnutrition and maximise fitness. KW - bee decline KW - foraging KW - nutrition KW - plant-insect interactions KW - pollen quality KW - PER KW - resource use Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208709 VL - 23 IS - 3 ER -