TY - JOUR A1 - Lindl, Felix A1 - Lamprecht, Anna A1 - Arrowsmith, Merle A1 - Khitro, Eugen A1 - Rempel, Anna A1 - Dietz, Maximilian A1 - Wellnitz, Tim A1 - Bélanger‐Chabot, Guillaume A1 - Stoy, Andreas A1 - Paprocki, Valerie A1 - Prieschl, Dominik A1 - Lenczyk, Carsten A1 - Ramler, Jacqueline A1 - Lichtenberg, Crispin A1 - Braunschweig, Holger T1 - Aromatic 1,2‐Azaborinin‐1‐yls as Electron‐Withdrawing Anionic Nitrogen Ligands for Main Group Elements JF - Chemistry – A European Journal N2 - The 2‐aryl‐3,4,5,6‐tetraphenyl‐1,2‐azaborinines 1‐EMe\(_{3}\) and 2‐EMe\(_{3}\) (E=Si, Sn; aryl=Ph (1), Mes (=2,4,6‐trimethylphenyl, 2)) were synthesized by ring‐expansion of borole precursors with N\(_{3}\)EMe\(_{3}\)‐derived nitrenes. Desilylative hydrolysis of 1‐ and 2‐SiMe\(_{3}\) yielded the corresponding N‐protonated azaborinines, which were deprotonated with nBuLi or MN(SiMe\(_{3}\))\(_{2}\) (M=Na, K) to the corresponding group 1 salts, 1‐M and 2‐M. While the lithium salts crystallized as monomeric Lewis base adducts, the potassium salts formed coordination polymers or oligomers via intramolecular K⋅⋅⋅aryl π interactions. The reaction of 1‐M or 2‐M with CO\(_{2}\) yielded N‐carboxylate salts, which were derivatized by salt metathesis to methyl and silyl esters. Salt metathesis of 1‐M or 2‐M with methyl triflate, [Cp*BeCl] (Cp*=C\(_{5}\)Me\(_{5}\)), BBr\(_{2}\)Ar (Ar=Ph, Mes, 2‐thienyl), ECl\(_{3}\) (E=B, Al, Ga) and PX\(_{3}\) (X=Cl, Br) afforded the respective group 2, 13 and 15 1,2‐azaborinin‐2‐yl complexes. Salt metathesis of 1‐K with BBr\(_{3}\) resulted not only in N‐borylation but also Ph‐Br exchange between the endocyclic and exocyclic boron atoms. Solution \(^{11}\)B NMR data suggest that the 1,2‐azaborinin‐2‐yl ligand is similarly electron‐withdrawing to a bromide. In the solid state the endocyclic bond length alternation and the twisting of the C\(_{4}\)BN ring increase with the sterics of the substituents at the boron and nitrogen atoms, respectively. Regression analyses revealed that the downfield shift of the endocyclic \(^{11}\)B NMR resonances is linearly correlated to both the degree of twisting of the C\(_{4}\)BN ring and the tilt angle of the N‐substituent. Calculations indicate that the 1,2‐azaborinin‐1‐yl ligand has no sizeable π‐donor ability and that the aromaticity of the ring can be subtly tuned by the electronics of the N‐substituent. KW - 1,2-azaborinine KW - aromaticity KW - crystallographic analyses KW - N-functionalization KW - salt metathesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312222 VL - 29 IS - 11 ER - TY - JOUR A1 - Härterich, Marcel A1 - Matler, Alexander A1 - Dewhurst, Rian D. A1 - Sachs, Andreas A1 - Oppel, Kai A1 - Stoy, Andreas A1 - Braunschweig, Holger T1 - A step-for-step main-group replica of the Fischer carbene synthesis at a borylene carbonyl JF - Nature Communications N2 - The Fischer carbene synthesis, involving the conversion of a transition metal (TM)-bound CO ligand to a carbene ligand of the form [=C(OR’)R] (R, R’ = organyl groups), is one of the seminal reactions in the history of organometallic chemistry. Carbonyl complexes of p-block elements, of the form [E(CO)n] (E = main-group fragment), are much less abundant than their TM cousins; this scarcity and the general instability of low-valent p-block species means that replicating the historical reactions of TM carbonyls is often very difficult. Here we present a step-for-step replica of the Fischer carbene synthesis at a borylene carbonyl involving nucleophilic attack at the carbonyl carbon followed by electrophilic quenching at the resultant acylate oxygen atom. These reactions provide borylene acylates and alkoxy-/silyloxy-substituted alkylideneboranes, main-group analogues of the archetypal transition metal acylate and Fischer carbene families, respectively. When either the incoming electrophile or the boron center has a modest steric profile, the electrophile instead attacks at the boron atom, leading to carbene-stabilized acylboranes – boron analogues of the well-known transition metal acyl complexes. These results constitute faithful main-group replicas of a number of historical organometallic processes and pave the way to further advances in the field of main-group metallomimetics. KW - chemical bonding KW - ligands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357270 VL - 14 ER - TY - JOUR A1 - Ramler, Jacqueline A1 - Schwarzmann, Johannes A1 - Stoy, Andreas A1 - Lichtenberg, Crispin T1 - Two Faces of the Bi−O Bond: Photochemically and Thermally Induced Dehydrocoupling for Si−O Bond Formation JF - European Journal of Inorganic Chemistry N2 - The diorgano(bismuth)alcoholate [Bi((C\(_{6}\)H\(_{4}\)CH\(_{2}\))\(_{2}\)S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi−O bond cleavage under given reaction conditions. Using the dehydrocoupling of silanes with either TEMPO or phenol as model reactions, the catalytic competency of 1-OPh has been investigated (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Different reaction pathways can deliberately be addressed by applying photochemical or thermal reaction conditions and by choosing radical or closed-shell substrates (TEMPO vs. phenol). Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations. KW - Bismuth KW - dehydrocoupling KW - radical reactions KW - chalcogens KW - catalysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257428 VL - 2022 IS - 7 ER - TY - JOUR A1 - Liu, Siyuan A1 - Légaré, Marc-André A1 - Seufert, Jens A1 - Prieschl, Dominic A1 - Rempel, Anna A1 - Englert, Lukas A1 - Dellermann, Theresa A1 - Paprocki, Valerie A1 - Stoy, Andreas A1 - Braunschweig, Holger T1 - 2,2′-Bipyridyl as a Redox-Active Borylene Abstraction Agent JF - Inorganic Chemistry N2 - 2,2′-Bipyridyl is shown to spontaneously abstract a borylene fragment (R–B:) from various hypovalent boron compounds. This process is a redox reaction in which the bipyridine is reduced and becomes a dianionic substituent bound to boron through its two nitrogen atoms. Various transition metal–borylene complexes and diboranes, as a well as a diborene, take part in this reaction. In the latter case, our results show an intriguing example of the homolytic cleavage of a B═B double bond. KW - Borylene KW - Heterocycles KW - Boron KW - Main-group chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215595 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Inorganic Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.0c01383. VL - 59 IS - 15 ER - TY - JOUR A1 - Brunecker, Carina A1 - Müssig, Jonas H. A1 - Arrowsmith, Merle A1 - Fantuzzi, Felipe A1 - Stoy, Andreas A1 - Böhnke, Julian A1 - Hofmann, Alexander A1 - Bertermann, Rüdiger A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Boranediyl‐ and Diborane(4)‐1,2‐diyl‐Bridged Platinum A‐Frame Complexes JF - Chemistry – A European Journal N2 - Diplatinum A‐frame complexes with a bridging (di)boron unit in the apex position were synthesized in a single step by the double oxidative addition of dihalo(di)borane precursors at a bis(diphosphine)‐bridged Pt\(^{0}\)\(_{2}\) complex. While structurally analogous to well‐known μ‐borylene complexes, in which delocalized dative three‐center‐two‐electron M‐B‐M bonding prevails, theoretical investigations into the nature of Pt−B bonding in these A‐frame complexes show them to be rare dimetalla(di)boranes displaying two electron‐sharing Pt−B σ‐bonds. This is experimentally reflected in the low kinetic stability of these compounds, which are prone to loss of the (di)boron bridgehead unit. KW - boron KW - bonding KW - EDA-NOCV KW - oxidative addition KW - platinum Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214707 VL - 26 IS - 39 SP - 8518 EP - 8523 ER - TY - INPR A1 - Englert, Lukas A1 - Stoy, Andreas A1 - Arrowsmith, Merle A1 - Müssig, Jonas H. A1 - Thaler, Melanie A1 - Deißenberger, Andrea A1 - Häfner, Alena A1 - Böhnke, Julian A1 - Hupp, Florian A1 - Seufert, Jens A1 - Mies, Jan A1 - Damme, Alexander A1 - Dellermann, Theresa A1 - Hammond, Kai A1 - Kupfer, Thomas A1 - Radacki, Krzysztof A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity T2 - Chemistry - A European Journal N2 - A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed. KW - diborane(6) KW - Lewis-base adducts KW - ligand exchange KW - crystallography KW - NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184888 N1 - This is the pre-peer reviewed version of the following article: L. Englert, A. Stoy, M. Arrowsmith, J. H. Muessig, M. Thaler, A. Deißenberger, A. Häfner, J. Böhnke, F. Hupp, J. Seufert, J. Mies, A. Damme, T. Dellermann, K. Hammond, T. Kupfer, K. Radacki, T. Thiess, H. Braunschweig, Chem. Eur. J. 2019, 25, 8612. https://doi.org/10.1002/chem.201901437, which has been published in final form at https://doi.org/10.1002/chem.201901437. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Stoy, Andreas A1 - Böhnke, Julian A1 - Jiménez-Halla, J. Oscar C. A1 - Dewhurst, Rian D. A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - CO\(_2\) Binding and Splitting by Boron–Boron Multiple Bonds T2 - Angewandte Chemie, International Edition N2 - CO\(_2\) is found to undergo room-temperature, ambient- pressure reactions with two species containing boron-boron multiple bonds, leading to incorporation of either one or two CO\(_2\) molecules. In one case, a thermally-unstable intermediate was structurally characterized, indicating the operation of an initial 2+2 cycloaddition mechanism in the reaction. KW - carbon dioxide KW - CO2 fixation KW - diborenes KW - diborynes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164265 N1 - This is the pre-peer reviewed version of the following article: A. Stoy, J. Böhnke, J. O. C. Jiménez‐Halla, R. D. Dewhurst, T. Thiess, H. Braunschweig, Angew. Chem. Int.Ed. 2018, 57,5947 –5951, which has been published in final form at DOI: 10.1002/anie.201802117. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - JOUR A1 - Ceyman, Harald A1 - Rosspeintner, Arnulf A1 - Schreck, Maximilian H. A1 - Mützel, Carina A1 - Stoy, Andreas A1 - Vauthey, Eric A1 - Lambert, Christoph T1 - Cooperative enhancement versus additivity of two-photon-absorption cross sections in linear and branched squaraine superchromophores JF - Physical Chemistry Chemical Physics N2 - The linear and nonlinear optical properties of a series of oligomeric squaraine dyes were investigated by one-photon absorption spectroscopy (1PA) and two-photon absorption (2PA) induced fluorescence spectroscopy. The superchromophores are based on two indolenine squaraine dyes with transoid (SQA) and cisoid configuration (SQB). Using these monomers, linear dimers and trimers as well as star-shaped trimers and hexamers with benzene or triphenylamine cores were synthesised and investigated. The red-shifted and intensified 1PA spectra of all superchromophores could well be explained by exciton coupling theory. In the linear chromophore arrangements we also found superradiance of fluorescence but not in the branched systems. Furthermore, the 2PA showed enhanced cross sections for the linear oligomers but only additivity for the branched systems. This emphasizes that the enhancement of the 2PA cross section in the linear arrangements is probably caused by orbital interactions of higher excited configurations. KW - 2-photon absorption KW - Vibronic contributions KW - One-photon KW - Molecules KW - Intensity KW - Multibranched structures KW - Optical properties KW - Dyes KW - Chromophores KW - Design Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188299 VL - 18 IS - 24 ER - TY - JOUR A1 - Harkin, David J. A1 - Broch, Katharina A1 - Schreck, Maximilian A1 - Ceyman, Harald A1 - Stoy, Andreas A1 - Yong, Chaw-Keong A1 - Nikolka, Mark A1 - McCulloch, Ian A1 - Stingelin, Natalie A1 - Lambert, Christoph A1 - Sirringhaus, Henning T1 - Decoupling charge transport and electroluminescence in a high mobility polymer semiconductor JF - Advanced Materials N2 - Fluorescence enhancement of a high-mobility polymer semiconductor is achieved via energy transfer to a higher fluorescence quantum yield squaraine dye molecule on 50 ps timescales. In organic light-emitting diodes, an order of magnitude enhancement of the external quantum efficiency is observed without reduction in the charge-carrier mobility resulting in radiances of up to 5 W str\(^{-1}\) m\(^{-2}\) at 800 nm. KW - Light-emitting diodes KW - Fiels-effect transistors KW - Energy transfer KW - Conjugated polymers KW - High performance KW - High efficiency KW - Perovskite KW - Amplification KW - Fluorescence KW - Emission Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187670 VL - 28 IS - 30 ER -