TY - THES A1 - Erdmann, Marco T1 - Coupled electron and nuclear dynamics in model systems T1 - Gekoppelte Elektronen- und Kerndynamik in Modellsystemen N2 - Subject of this work was to investigate the influence of nonadiabatic coupling on the dynamical changes of electron and nuclear density. The properties of electron density have neither been discussed in the stationary case, nor for excited electronic states or for a coupled electronic and nuclear motion. In order to remove these restrictions one must describe the quantum mechanical motion of all particles in a system at the same level. This is only possible for very small systems. A model system developed by Shin and Metiu [1, 2] contains all necessary physical ingredients to describe a combined electronic and nuclear motion. It consists of a single nuclear and electronic degree of freedom and the particle interaction is parameterized in such a way as to allow for a facile switching between and adiabatic (Born-Oppenheimer type) and a strongly coupled dynamics. The first part of the work determined the “static” properties of the model system: The calculation of electronic eigenfunctions, adiabatic potential curves, kinetic coupling elements and transition dipole moments allowed for a prediction of the coupled dynamics. The potentials obtained from different parameterization showed two distinct cases: In the first case the ground and first excited state are separated by a large energy gap which is the typical Born-Oppenheimer case; the second one exhibits an avoided crossing which results in a breakdown of the adiabatic approximation. Due to the electronic properties of the system, the quantum dynamics in the two distinct situations is very different. This was illustrated by calculating nuclear and electron densities as a function of time. In the Born-Oppenheimer case, the electron density followed the vibrational motion of the nucleus. This was demonstrated in two examples. In the strongly coupled case the wave packet did not exhibit features caused by nonadiabatic coupling. However, projections of the wave function onto the electronic states revealed the usual picture obtained from solutions of the nuclear Schrödinger equation involving coupled electronic states. In that case the nuclear motion triggered charge transfer via nonadiabatic coupling. The second part of the work demonstrated that the model system can easily be modified to yield binding situations often found in diatomic molecules. The different situations can be characterized in terms of bound and dissociative adiabatic potential curves. The investigation focussed on the case of an electronic predissociation, where the ground state is dissociative in the asymptotic limit of large internuclear distances. Within our model system we were able to demonstrate how the character of the electron density changes during the fragmentation process. In the third part we investigated the influence of external fields on the correlated dynamics of electron and nucleus. Employing adiabatic potential curves, the structure of absorption spectra can be understood within the weak-field limit. In the above described Born-Oppenheimer case the adiabatically calculated spectrum was in very good agreement with the exact one, whereas in the strongly coupled case the obtained spectrum was not able to resemble the exact one. Regarding the dynamics during a laser excitation process the time-dependent electron and nuclear densities nicely illustrated the famous Franck-Condon principle. The interaction with strong laser pulses lead to an excitation of many bound electronic and vibrational states. The electron density reflected the classical-like quiver motion of the electron induced by the fast variations of the electric field. The nucleus did not follow these fast oscillations because of its much larger mass. The last part of the work extended the original model system by including an additional electron. As a consequence of the Pauli principle, the spatial electronic wave function has to be either symmetric or anti-symmetric with respect to exchange of the two electrons. This corresponds to anti-parallel or parallel electron spins, respectively. The extended model already contains the physical properties of a many-electron system. Solving the time-dependent Schrödinger equation for a typical vibrational wave packet motion clearly indicated that the electron density is no longer suited to “localize” single electrons. We extended the definition of the electron localization function (ELF) to an exact, time-dependent wave function and demonstrated, how the ELF can be used to further characterize a coupled electron and nuclear motion. Finally, we gave an outlook of how to define electron localization in the case of anti-parallel electron spins. We derived a quantity similar to the ELF denoted “anti-parallel spin electron localization function” (ALF) and demonstrated that the ALF allows to follow time-dependent changes of the electron localization in a numerical example. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. N2 - Gegenstand dieser Arbeit war es, den Einfluss nichtadiabatischer Kopplung auf die dynamischen Änderungen von Elektronen- und Kerndichten zu untersuchen. Die Eigenschaften der Elektronendichte wurden bislang weder für den nicht-stationären Fall, noch für angeregte elektronische Zustände oder für eine gekoppelte Elektronen- und Kerndynamik diskutiert. Diese Einschränkungen lassen sich beseitigen, indem man die quantenmechanische Bewegung aller Teilchen eines Systems auf dem gleichen Niveau beschreibt. Dies ist nur für sehr kleine Systeme überhaupt möglich. Ein Modellsystem, das von Shin und Metiu [1, 2] entwickelt wurde, erfüllt alle notwendigen physikalischen Vorraussetzungen, um eine gekoppelte Elektronen- und Kernbewegung zu beschreiben. Das Modell enthält jeweils nur einen Freiheitsgrad für Kern und Elektron, und die Parametrisierung der Teilchenwechselwirkung ermöglicht den flexiblen Wechsel von adiabatischer (Born-Oppenheimer-Fall) zu stark gekoppelter Dynamik. Der erste Teil der Arbeit untersuchte die „statischen“ Eigenschaften des Modellsystems: Die Berechnung elektronischer Eigenfunktionen, adiabatischer Potentialkurven, kinetischer Kopplungselemente und Übergangsdipolmomente erlaubte gewisse Vorhersagen über die zu erwartende, gekoppelte Dynamik. Die Potentiale, die man für verschiedene Parametrisierung erhielt, zeigten zwei deutlich unterschiedliche Fälle: Im ersten Fall, einer gültigen Born-Oppenheimer-Näherung, sind der Grund- und erste angeregte Zustand durch eine große Energielücke voneinander getrennt. Der zweite Fall zeigt eine vermiedene Kreuzung, die zu einem Versagen der adiabatischen Näherung führt. Aufgrund der elektronischen Eigenschaften des Systems, unterscheidet sich die Quantendynamik in den beiden betrachteten Fällen grundlegend, wie durch die Berechnung zeitabhängiger Kern- und Elektronendichten veranschaulicht wurde. Im Born-Oppenheimer-Fall folgte die Änderung der Elektronendichte der Schwingungsbewegung des Kerns. Im Falle starker Kopplung zeigte das Wellenpaket keine Anzeichen einer nichtadiabatischen Kopplung. Die Projektionen der Wellenfunktion auf die elektronischen Zustände enthüllten jedoch das übliche Bild, das man aus der Lösung der Schrödingergleichung der Kerne für gekoppelte elektronische Zustände erhält. In diesem Fall verursachte die Kernbewegung einen Ladungstransfer aufgrund nichtadiabatischer Kopplung. Der zweite Teil der Arbeit zeigte, dass das Modellsystem leicht modifiziert werden kann, um in zweiatomigen Molekülen vorhandene Bindungssituationen zu simulieren. Die verschiedenen Fälle sind durch gebundene und dissoziative adiabatische Potentialkurven charakterisiert. Die Untersuchungen konzentrierten sich auf den Fall einer elektronischen Prädissoziation, d.h. der Grundzustand ist dissoziativ für große Kernabstände. Innerhalb unseres Modellsystems konnten wir zeigen, wie sich die Elektronendichte während des Fragmentierungsprozesses ändert. Im dritten Teil untersuchten wir den Einfluss externer elektrischer Felder auf die korrelierte Elektronen- und Kernbewegung. Mit Hilfe adiabatischer Potentiale kann die Struktur von Absorptionsspektren im Falle schwacher Felder verstanden werden. Für den oben beschriebenen Fall gültiger Born-Oppenheimer-Näherung, stimmte das adiabatisch berechnete Spektrum sehr gut mit dem exakten überein. Für den Fall starker nichtadiabatischer Kopplung zeigte das erhaltene Spektrum keine Übereinstimmung mit dem exakt berechneten. Die Berechnung zeitabhängiger Elektronen- und Kerndichten, während der Wechselwirkung mit einem Laserfeld, veranschaulichte deutlich das Franck-Condon-Prinzip. Die Wechselwirkung mit einem intensiven Laserpuls führte zur Anregung vieler gebundener elektronischer und Schwingungszustände. Die Elektronendichte zeigte die einer klassischen Bewegung sehr ähnliche Zitterbewegung des Elektrons, die durch die schnellen Änderungen des elektrischen Feldes hervorgerufen wird. Der Kern folgte aufgrund seiner wesentlich höheren Masse diesen schnellen Oszillationen nicht. Der letzte Teil der Arbeit erweiterte das ursprüngliche Modell durch Hinzufügen eines weiteren Elektrons. Als Konsequenz des Pauli-Prinzips muss die Ortsraumwellenfunktion entweder symmetrisch oder antisymmetrisch bezüglich Austausches der beiden Elektronen sein. Dies entspricht antiparallelen, bzw. parallelen Elektronenspins. Das erweiterte Modell enthält bereits die physikalischen Eigenschaften eines Mehrelektronensystems. Das Lösen der Schrödingergleichung für eine Schwingungsbewegung des Kerns legte nahe, dass sich die Elektronendichte nicht eignet, die Lokalisierung der Elektronen zu charakterisieren. Wir erweiterten deshalb die Definition der Elektronenlokalisierungsfunktion (ELF) auf eine exakte, zeitabhängige Wellenfunktion und untersuchten, inwieweit sich die ELF eignet, eine gekoppelte Elektronen- und Kernbewegung genauer zu analysieren. Am Ende der Arbeit folgte ein Ausblick, wie Elektronenlokalisierung im Falle antiparalleler Elektronenspins definiert werden kann. Die von uns abgeleitete „Elektronenlokalisierungsfunktion für antiparallelen Spin“ (ALF) erlaubt es, die zeitabhängige Änderung der Elektronenlokalisierung zu beobachten, wie wir an einem numerischen Beispiel verdeutlichen konnten. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. KW - Nichtadiabatischer Prozess KW - Quantenelektrodynamik KW - Quantendynamik KW - nichtadiabatische Kopplung KW - exakte Wellenfunktion KW - Elektronenlokalisierung KW - quantum dynamics KW - nonadiabatic coupling KW - exact wave function KW - electron localization Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9968 ER - TY - THES A1 - Tarcea, Nicolae T1 - Light as a universal tool : Microcapsule sizing by elastic light scattering and mineral investigation by in situ Raman spectroscopy T1 - Licht als Universalwerkzeug : Größenbestimmung der Mikrokapseln mittels elastischer Lichtstreuung und Mineral-Untersuchungen mittels In Situ Ramanspektroskopie N2 - The present work consist of two major parts. The first part, extending over chapters 1, 2, 3 and 4, addresses the design and construction of a device capable of determining the shell thickness and the core size for monolayer spherical particles in a flow. The second part containing chapters 5, 6, 7, 8, 9 and 10, concentrate on the use of Raman spectroscopy as a space application, namely for use as a tool for in situ planetary investigations. This part directly addresses the MIRAS project, a study run under the auspices of Federal Ministry of Education and Research, BMBF and German Aerospace Center, DLR under national registration number 50OW0103. MIRAS stands for "Mineral Investigation by in situ Raman Spectroscopy". Microcapsule Sizing by Elastic Light Scattering The industrial development of processes based on microcapsules depends on the possibility to provide clear and complete information about the properties of these microcapsules. However, the tools for an easy and efficient determination of the microcapsule properties are lacking, several methods being often required to describe adequately the microcapsule behavior. Methods for evaluating the individual size and size distribution of both the core and the shell are required together with methods for measuring the mechanical strength, stability in appli-cation media, permeability of the shell, etc. Elastic light scattering measurements provide a possible way of determining properties such as core size, shell size and refractive index. The design and con-struction of a device capable of measuring the above mentioned parameters for a core-shell particle is the subject of the first part of this thesis. The basic principle of measurement for the device proposed here consists of an-alyzing one particle at a time by recording the elastic light scattering pattern at angles between approx. 60 and 120 grad. By comparing the experimentally recorded phase functions with the previously calculated phase functions stored in a database, the geometry of the scattering object can be identified. In our case the geometry is characterized by two parameters: the shell thickness and the core radius. In chapter 2 a short overview on the methods used for sizing microparticles is given. Different sizing methods are compared, and the advantages and disadvan-tages for the general problem of sizing are shortly discussed. It is observed that all sizing methods that are based on elastic light scattering theories are ensemble methods. Chapter 3 focusses on the theories used for calculating the theoretical scattering patterns with emphasize on the Mie theory. The generalization of Mie theory for layered particles is shortly presented and the far field intensity approximations are discussed. The last chapter (4) of this first part describes the experimental approach for building an automatic microcapsule sizer. The approach started by O. Sbanski [76] with the development of a software packet for calculating and storing theoret-ical phase functions for core-shell particles was continued with the designing and construction of a measuring device. The hardware construction and the software with all implemented corrections imposed by the individual setup components are described in detail. For the laser, the monochromaticity, the intensity profile of the beam as well as the planarity of the equi-phase fronts are taken into consid-eration. The flow cell with three different designs is described, and the influences of the employed design on the light scattering patterns are discussed together with the optical system used for recording the experimental phase functions. The detection system formed by two identical linear CCD arrays is presented together with the software approach used for data acquisition. Ways of improving the quality and the speed of the analyzing process are discussed. The final section presents measurements run on samples made of homogeneous spheres and also on samples containing industrial microcapsules. Mineral Investigation by in situ Raman Spectroscopy The envisaged future planetary missions require space-born instruments, which are highly miniaturized with respect to volume and mass and which have low needs of power. A micro Raman spectrometer as a stand alone device on a planetary surface (e.g. Mars) offers a wide spectrum of possibilities. It can assess the chemical analysis via determination of the mineral composition, detect organic molecules in the soil, identify the principal mineral phases, etc. The technical developments in the last years have introduced a new generation of small Raman systems suitable for robotic mineral characterization on planetary surfaces [20, 95]. Two different types of spectrometer were considered for the MIRAS study. As supporting laboratory experiments for the MIRAS study, the measure-ments on standard minerals and on SNC Mars meteorites are discussed in chapter 6. The following SNC meteorites have been investigated: Sayh al Uhaymir 060, Dar al Gani 735, Dar al Gani 476, Northwest Africa 856, Los Angeles, Northwest Africa 1068 and Zagami. Pyrite as a hitherto undescribed phase in the picritic (olivin-phyric) shergottite NWA 1068 as well as reduced carbon (e.g. graphite) and anatase in the shergottite Say al Uhaymir 060 are new findings for this class of meteorites. A detailed description of the proposed designs for MIRAS, with the compo-nents used for building the test version on a breadboard is covered in chapter 7. The scientific as well as the mission requirements imposed on the instrument are discussed. The basic design is presented and the main components that are brought together to build the device being the laser unit, the Raman head, the Rayleigh filtering box, and the spectral sensor (spectrometer with a matching de-tector) are described. The two proposed designs, one based on an acousto-optic tunable filter (AOTF) and the other based on a dispersive hadamard transform spectrometer are compared to each other. The actual breadboard setup with the detailed description of the components follows in Section 7.3. Further de-velopment of a Raman spectrometer for planetary investigations is proposed in combination with a microscope as part of the Extended-MIRAS project. The software developed for controlling the breadboard version of MIRAS is described in chapter 8 together with a short description of the structure of a relational database used for in house spectra management. The measuring pro-cedures and the data processing steps are presented. Spectra acquired with the MIRAS breadboard version based on the AOTF are shown in chapter 9. The final chapter addresses a rather different possibility of using Raman spectroscopy for planetary investigations. The chapter summarizes the content of four tech-nical notes that were established within the study contracted by the European Space Agency with firma Kayser-Threde in Munich concerning the possibility of applying Raman spectroscopy in the field of remote imaging. N2 - Die vorliegende Arbeit besteht aus zwei Hauptteilen. Der erste Teil, der die Kapitel 1, 2, 3 und 4 umfasst, beschäftigt sich mit dem Design und Aufbau eines Gerätes, welches in der Lage sein sollte, die Schalendichte und die Kerngröße von geschichteten Kugeln in einer Strömung festzustellen. Der zweite Teil, der aus den Kapiteln 5, 6, 7, 8, 9 und 10 besteht, befasst sich mit der Raman-Spektroskopie als Anwendung in der Raumfahrt, und zwar mit deren Einsatz bei in-situ-planetarischen Erforschungen. Dieser Teil bezieht sich direkt auf das MIRAS-Projekt, eine vom Bundesministerium für Bildung und Forschung (BMBF) und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) unter der nationalen Eintragsnummer 500W0103 geförderte Studie. MIRAS steht für "Mineral Investigations by in situ Raman Spectroscopy". Größenbestimmung der Mikrokapseln mittels elastischer Lichtstreuung Der industrielle Fortschritt der auf Mikrokapseln basierenden Prozesse hängt mit der Möglichkeit zusammen, eindeutige und komplette Informationen über die Eigenschaften dieser Mikrokapseln zu liefern. Es gibt allerdings kaum Instrumente zur schnellen und effizienten Feststellung der Eigenschaften von Mikrokapseln. Zahlreiche Methoden sind häufig notwendig, um das Verhalten von Mikrokapseln ausreichend zu beschreiben. Man braucht Methoden zur Auswertung der indi-viduellen Größe und der Größenverteilung von Kern und Schale sowie zur Messung der mechanischen Eigenschaften, Stabilität in Anwendungsmedien, Schalenper-meabilität usw. Die Messungen des elastischen Streulichts stellen eine mögliche Methode dar, Eigenschaften wie Kerngröße, Schalengröße und Brechungsindex festzulegen. Das Design und der Aufbau eines Gerätes, das die obengennanten Parame-ter für eine Mikrokapsel messen kann, bilden das Thema des ersten Teils dieser Arbeit. Das grundlegende Messprinzip für das hier vorgeschlagene Gerät besteht in der Analyse einzelner Kapseln, indem das Streuungsmuster des elastischen Lichts bei Winkeln zwischen ca. 60 und 120 grad aufgezeichnet wird. Werden die expe-rimentell aufgezeichneten Phasenfunktionen mit den vorher berechneten Streu-ungsmustern in der Datenbank verglichen, so kann die Geometrie des Streuung-sobjektes identifiziert werden. In unserem Fall wird die Geometrie durch zwei Parameter gekennzeichnet: die Schalendichte und den Kernradius. In Kapitel 2 wird ein kurzer Überblick über die Methoden zur Festlegung der Größe von Mikrokapseln gegeben. Es werden verschiedene Methoden miteinander verglichen und Vorteile bzw. Nachteile für das Allgemeinproblem der Größenbes-timmung werden kurz angesprochen. Es wird festgestellt, dass alle Methoden, denen die Theorien der elastischen Lichtstreuung zugrundeliegen, "Ensemble-Methoden" sind. Kapitel 3 beschreibt die Theorien, die oft auf die Berechnung der theoretischen Streuungsmuster angewandt werden, wobei hier die Mie-Theorie im Mittelpunkt steht. Die Erweiterung der Mie-Theorie auf geschichtete Kugeln wird hier kurz geschildert und die Vereinfachungen der Fernfeldstärke werden diskutiert. Das letzte Kapitel (4) dieses ersten Teils befasst sich mit dem experimentellen Projekt zum Aufbau eines automatischen Mikrokapselanalysators. Das von O. Sbanski [76] begonnene Projekt mit der Entwicklung eines Softwarepakets zur Berechnung und Speicherung von theoretischen Phasenfunktionen für Mikrokapseln wurde mit dem Entwurf bzw. dem Aufbau eines Messgerätes fortgesetzt. Die Hardware und die Software mit allen für die individuellen Elemente des Aufbaus benötigten Korrekturen werden ausführlich beschrieben. Für den Laser werden Monochromatizität, Strahlstärkeprofil sowie die Planarität von gleichphasigen Wellenfronten berücksichtigt. Die Strömungszelle mit drei verschiedenen Designs wird geschildert. Einflüsse des eingesetzten Entwurfs auf die Eigenschaften der Lichtstreung sowie das optische, zur Aufzeichnung experimenteller Phasenfunktionen verwendete System werden diskutiert. Das aus zwei identischen linearen CCD-Arrays bestehende Detektionssystem wird zusammen mit der zur Datenaufnahme verwendeten Software präsentiert. Es werden gleichfalls einige Methoden zur Verbesserung der Qualität bzw. Geschwindigkeit des Analyseprozesses angesprochen. Der letzte Teil beschreibt Messungen, welche an homogenen Kugeln sowie industriellen Mikrokapseln durchgeführt wurden. MIRAS - "Mineral Investigation by in situ Raman Spectroscopy" Die für die Zukunft vorausgesehenen planetarischen Missionen benötigen Instru-mente, die in Bezug auf Volumen und Gewicht extrem stark miniaturisiert sind und wenig Energie brauchen. Ein Mikro-Ramanspektrometer als allein operieren-des Gerät auf der planetarischen Oberfläche (z.B. Mars) bietet ein breites Spek-trum von Möglichkeiten an. Es kann die chemische Analyse durch Festlegung der mineralischen Zusammensetzung auswerten, organische Moleküle im Boden ausweisen, die mineralischen Hauptphasen identifizieren usw. Die technischen Entwicklungen der letzten Jahre haben eine neue Generation kleiner Raman-systeme mit sich gebracht, welche für die mineralische Charakterisierung von planetarischen Oberflächen geeignet sind. Für die MIRAS-Studie wurden zwei verchiedene Typen von Spektrometern berücksichtigt. In Kapitel 6 werden die Messungen von Standardmineralien und SNC-Marsmeteoriten als unterstützende Laborexperimente behandelt. Folgende SNC-Meteorite sind untersucht worden: Sayh al Uhaymir 060, Dar al Gani 735, Dar al Gani 476, Northwest Africa 856, Los Angeles, Northwest Africa 1068 und Zagami. Pyrit als eine bis jetzt unbeschriebene Phase in dem Picritic (Olivin-Phyric) Shergottit NWA 1068 sowie reduzierter Kohlenstoff (z.B. Graphit) und Anatase in dem Shergottit Say al Uhaymir 060 sind neue Erkenntnisse für diese Meteoritenklasse. Eine detaillierte Beschreibung der vorgeschlagenen Entwürfe für MIRAS mit den Bauteilen, die zum Aufbau der Testversion eines Breadboard verwendet wurden, wird in Kapitel 7 geliefert. Es werden sowohl die wissenschaftlichen als auch die Missionsanforderungen an das Gerät diskutiert. Der Grundentwurf wird vorgeführt, wobei die einzelnen Hauptbauteile des Gerätes die Laserein-heit, den Ramankopf, das Rayleigh-Filtersystem und das Spektrometer (mit einem passenden Detektor) darstellen. Die zwei vorgeschlagenen Entwürfe, der eine basierend auf einem akusto-optisch einstellbaren Filter (AOTF), der andere hingegen auf einem dispersiven Hadamard-Transformationsspektrometer werden miteinander verglichen. Der tatsächliche Breadboard-Aufbau sowie eine detaillierte Beschreibung der Bauteile folgen in Unterkapitel 7.3. Es wird ein weiteres Entwicklungskonzept für ein Raman-Spektrometer in Bezug auf planetarische Untersuchungen, im Zusammenhang mit einem Mikroskop als Teil des erweiterten MIRAS-Projektes, vorgeschlagen. Das für die Kontrolle der MIRAS Breadboard-Version entwickelte Programm samt der Struktur einer zum internen Spektrummanagement verwendeten rela-tionelen Datenbank werden in Kapitel 8 vorgestellt. Die Messprozeduren und die Datenbearbeitungsvorgänge werden zusammen beschrieben. Die mit der auf AOTF basierenden MIRAS Breadboard-Version aufgenommenen Spektren sind in Kapitel 9 abgebildet. Das letzte Kapitel (10) bezieht sich auf eine etwas andere Möglichkeit, Raman-Spektroskopie bei planetarischen Untersuchungen anzuwen-den. Das Kapitel fasst den Inhalt von vier technischen Beobachtungen zusam-men, welche im Rahmen der von der Firma Kayser Threde in München für die European Space Agency ausgeschriebenen Studie aufgezeichnet wurden. Diese Studie befasst sich mit der Möglichkeit, Raman-Spektroskopie auf das Gebiet der Fernaufnahmen anzuwenden. KW - Mikrokapseln KW - Mie Theorie KW - Raman Spektroskopie KW - MIRAS KW - Mars Meteoriten KW - Microcapsules KW - Mie Theory KW - Raman Spectroscopy KW - MIRAS KW - Mars Meteorites Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9383 ER -