TY - JOUR A1 - Schanbacher, Constanze A1 - Hermanns, Heike M. A1 - Lorenz, Kristina A1 - Wajant, Harald A1 - Lang, Isabell T1 - Complement 1q/tumor necrosis factor-related proteins (CTRPs): structure, receptors and signaling JF - Biomedicines N2 - Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction. KW - adiponectin KW - AMPK KW - C1q/TNF related protein (CTRP) KW - inflammation KW - metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304136 SN - 2227-9059 VL - 11 IS - 2 ER - TY - THES A1 - Nemec, Katarina T1 - Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs) T1 - Regulierung der Signalübertragung des Parathormon 1-Rezeptors (PTH1R) durch Rezeptoraktivitäts-modifizierende Proteine (RAMPs) N2 - The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions. Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive. This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation. I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors. These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR function and advanced drug design. N2 - G Protein-gekoppelte Rezeptoren (GPCRs) bilden die größte und pharmakologisch wichtigste Familie von Zelloberflächenrezeptoren, die zahlreiche (patho-)physiologische Prozesse im menschlichen Körper steuern. GPCRs übertragen während des Rezeptoraktivierungsprozesses extrazelluläre Signale in das Zellinnere, wo durch die extrazelluläre Stimulation Konformationsänderungen des Rezeptorkerns auslöst und die Bindung intrazellulärer Bindungspartner – G Proteine, G Protein-gekoppelte Rezeptorkinase und Arrestine - ermöglicht. Es handelt sich also um einen kritischen Prozess in der Signaltransduktion, der durch einige endogene Moleküle wie Ionen, Lipide oder andere Proteine moduliert werden kann und Auswirkungen auf nachgeschaltete Signalkaskaden hat. GPCRs bilden gewebeabhängige Oligomere mit ihren interagierenden Partnern, Rezeptor-Aktivitäts-modifizierende Proteinen (RAMPs), ubiquitär exprimierten Membranproteinen. Bekannt ist, dass sie die Ligandenbindung, die G- Protein-Kopplung, die nachgeschaltete Signalisierung, das Trafficking und das Recycling einiger GPCRs modulieren. Ihre Rolle im kritischsten Prozess der Signaltransduktion - der Rezeptoraktivierung - wurde jedoch nur begrenzt erforscht. Anhand des physiologisch und therapeutisch wichtigen Parathormon-Rezeptors (PTH1R), einem GPCR der Klasse B, wurden die Modulationseffekte von RAMPs auf den Prozess der Rezeptoraktivierung und ihre Folgen für die nachgeschaltete Signalübertragung analysiert. Hierzu wurden verschiedene optische Biosensoren zur Messung der Aktivierung des PTH1R und seiner Signalkaskade entwickelt und in verschiedenen Versuchsanordnungen eingesetzt, mit dem Ziel einen holistischen Blick auf die Interaktion zwischen PTH1R und RAMPs und ihre funktionellen Auswirkungen zu erhalten. Die Interaktion zwischen PTH1R und RAMPs erwies sich als besonders ausgeprägt für RAMP2, und RAMP2 zeigte eine spezifische allosterische Modulation der PTH1R-Konformation, sowohl im basalen als auch im Liganden- aktivierten Zustand. Ein einzigartiger voraktivierter oder (meta-stabiler) Zustand ermöglichte eine schnellere Rezeptoraktivierung auf Liganden-spezifische Weise. Außerdem beeinflusste RAMP2 die G Protein- und Nicht-G Protein-vermittelte Signalübertragung indem es die PTH-vermittelte Gi3-Signalempfindlichkeit und die Kinetik der cAMP-Akkumulation modulierte. Weiterhin erhöhte RAMP2 die Menge der β-Arrestin2-Rekrutierung an PTH1R auf Liganden-spezifische Weise. Dies könnte mit einer erhöhten zytosolischen ERK-Menge zusammenhängen, die hat sich von der nukleären ERK-Phosphorylierung unterscheidet. Um einen molekularen Mechanismus für die vorgestellten Ergebnisse vorzuschlagen, wurden mehrere strukturelle Modelle entwickelt und analysiert. Diese Arbeit liefert den Beweis, dass RAMP die GPCR-Aktivierung mit funktionellen Auswirkungen auf die zelluläre Signalübertragung reguliert. Die Ergebnisse sollten im Zusammenhang mit zellspezifischen Koexpressionsmustern interpretiert werden und können zur Entwicklung von fortschrittlichen Therapeutika positiv beitragen. Da GPCRs praktisch alle Zellfunktionen koordinieren und seit jeher wichtigen Angriffspunkten für Medikamente sind, tragen die vorgestellten Erkenntnisse zum universellen Verständnis der molekularen Mechanismen bei, die den menschlichen Körper orchestrieren. KW - G-Protein gekoppelter Rezeptor KW - GPCR KW - RAMP KW - PTH1R KW - FRET KW - BRET KW - pharmacology KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Förster Resonanz Energie Transfer Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288588 ER - TY - JOUR A1 - Nwogha, Jeremiah S. A1 - Abtew, Wosene G. A1 - Raveendran, Muthurajan A1 - Oselebe, Happiness O. A1 - Obidiegwu, Jude E. A1 - Chilaka, Cynthia A. A1 - Amirtham, Damodarasamy D. T1 - Role of non-structural sugar metabolism in regulating tuber dormancy in white yam (Dioscorea rotundata) JF - Agriculture N2 - Changes in sugar composition occur continuously in plant tissues at different developmental stages. Tuber dormancy induction, stability, and breaking are very critical developmental transitions in yam crop production. Prolonged tuber dormancy after physiological maturity has constituted a great challenge in yam genetic improvement and productivity. In the present study, biochemical profiling of non-structural sugar in yam tubers during dormancy was performed to determine the role of non-structural sugar in yam tuber dormancy regulation. Two genotypes of the white yam species, one local genotype (Obiaoturugo) and one improved genotype (TDr1100873), were used for this study. Tubers were sampled at 42, 56, 87, 101, 115, and 143 days after physiological maturity (DAPM). Obiaoturugo exhibited a short dormant phenotype and sprouted at 101-DAPM, whereas TDr1100873 exhibited a long dormant phenotype and sprouted at 143-DAPM. Significant metabolic changes were observed in non-structural sugar parameters, dry matter, and moisture content in Obiaoturugo from 56-DAPM, whereas in TDr1100873, significant metabolic changes were observed from 101-DAPM. It was observed that the onset of these metabolic changes occurred at a point when the tubers of both genotypes exhibited a dry matter content of 60%, indicating that a dry matter content of 60% might be a critical threshold for white yam tuber sprouting. Non-reducing sugars increased by 9–10-fold during sprouting in both genotypes, which indicates their key role in tuber dormancy regulation in white yam. This result implicates that some key sugar metabolites can be targeted for dormancy manipulation of the yam crop. KW - sugars KW - metabolism KW - yam KW - tuber KW - genotypes KW - dormancy KW - regulation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304486 SN - 2077-0472 VL - 13 IS - 2 ER - TY - JOUR A1 - Hadi, Naji Said Aboud A1 - Bankoglu, Ezgi Eyluel A1 - Stopper, Helga T1 - Genotoxicity of pyrrolizidine alkaloids in metabolically inactive human cervical cancer HeLa cells co-cultured with human hepatoma HepG2 cells JF - Archives of Toxicology N2 - Pyrrolizidine alkaloids (PAs) are secondary plant metabolites, which can be found as contaminant in various foods and herbal products. Several PAs can cause hepatotoxicity and liver cancer via damaging hepatic sinusoidal endothelial cells (HSECs) after hepatic metabolization. HSECs themselves do not express the required metabolic enzymes for activation of PAs. Here we applied a co-culture model to mimic the in vivo hepatic environment and to study PA-induced effects on not metabolically active neighbour cells. In this co-culture model, bioactivation of PA was enabled by metabolically capable human hepatoma cells HepG2, which excrete the toxic and mutagenic pyrrole metabolites. The human cervical epithelial HeLa cells tagged with H2B-GFP were utilized as non-metabolically active neighbours because they can be identified easily based on their green fluorescence in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronuclei in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of cytochrome P450 enzymes with ketoconazole abrogated micronucleus formation. The efflux transporter inhibitors verapamil and benzbromarone reduced micronucleus formation in the co-culture model. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured HeLa cells. KW - co-culture KW - micronuclei KW - mitotic disturbance KW - cytochrome P450s KW - membrane transporters KW - pyrrolizidine alkaloids Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324708 VL - 97 IS - 1 ER - TY - THES A1 - Jarzina, Sebastian Oskar T1 - Assessment of systemic toxicity in vitro using the Adverse Outcome Pathway (AOP) concept: nephrotoxicity due to receptor-mediated endocytosis and lysosomal overload and inhibition of mtDNA polymerase-ɣ as case studies T1 - Bewertung der systemischen Toxizität in vitro unter Verwendung des Adverse Outcome Pathway (AOP)-Konzepts: Nephrotoxizität infolge rezeptorvermittelter Endozytose und lysosomaler Überlastung sowie Hemmung der mtDNA-Polymerase-ɣ als Fallstudien N2 - The US National Research Council (NRC) report "Toxicity Testing in the 21st Century: A Vision and a strategy (Tox21)", published in 2007, calls for a complete paradigm shift in tox-icity testing. A central aspect of the proposed strategy includes the transition from apical end-points in in vivo studies to more mechanistically based in vitro tests. To support and facilitate the transition and paradigm shift in toxicity testing, the Adverse Outcome Pathway (AOP) concept is widely recognized as a pragmatic tool. As case studies, the AOP concept was ap-plied in this work to develop AOPs for proximal tubule injuries initiated by Receptor-mediated endocytosis and lysosomal overload and Inhibition of mtDNA polymerase-. These AOPs were used as a mechanistic basis for the development of in vitro assays for each key event (KE). To experimentally support the developed in vitro assays, proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) were treated with model compounds. To measure the dis-turbance of lysosomal function in the AOP – Receptor-mediated endocytosis and lysosomal overload, polymyxin antibiotics (polymyxin B, colistin, polymyxin B nonapeptide) were used as model compounds. Altered expression of lysosomal associated membrane protein 1/2 (LAMP-1/2) (KE1) and cathepsin D release from lysosomes (KE2) were determined by im-munofluorescence, while cytotoxicity (KE3) was measured using the CellTiter-Glo® cell via-bility assay. Importantly, significant differences in polymyxin uptake and susceptibility be-tween cell lines were observed, underlining the importance of in vitro biokinetics to determine an appropriate in vitro point of departure (PoD) for risk assessment. Compared to the in vivo situation, distinct expression of relevant transporters such as megalin and cubilin on mRNA and protein level in the used cell lines (RPTEC/TERT1 and NRK-52E) could not be con-firmed, making integration of quantitative in vitro to in vivo extrapolations (QIVIVE) neces-sary. Integration of QIVIVE by project partners of the University of Utrecht showed an im-provement in the modelled biokinetic data for polymyxin B. To assess the first key event, (KE1) Depletion of mitochondrial DNA, in the AOP – Inhibition of mtDNA polymerase-, a RT-qPCR method was used to determine the mtDNA copy number in cells treated with mod-el compounds (adefovir, cidofovir, tenofovir, adefovir dipivoxil, tenofovir disoproxil fumarate). Mitochondrial toxicity (KE2) was measured by project partners using the high-content imaging technique and MitoTracker® whereas cytotoxicity (KE3) was determined by CellTiter-Glo® cell viability assay. In contrast to the mechanistic hypothesis underlying the AOP – Inhibition of mtDNA polymerase-, treatment with model compounds for 24 h resulted in an increase rather than a decrease in mtDNA copy number (KE1). Only minor effects on mitochondrial toxicity (KE2) and cytotoxicity (KE3) were observed. Treatment of RPT-EC/TERT1 cells for 14 days showed only a slight decrease in mtDNA copy number after treatment with adefovir dipivoxil and tenofovir disoproxil fumarate, underscoring some of the limitations of short-term in vitro systems. To obtain a first estimation for risk assessment based on in vitro data, potential points of departure (PoD) for each KE were calculated from the obtained in vitro data. The most common PoDs were calculated such as the effect concentra-tion at which 10 % or 20_% effect was measured (EC10, EC20), the highest no observed effect concentration (NOEC), the lowest observed effect concentration (LOEC), the benchmark 10 % (lower / upper) concentrations (BMC10, BMCL10, BMCU10) and a modelled non-toxic con-centration (NtC). These PoDs were then compared with serum and tissue concentrations de-termined from in vivo studies after treatment with therapeutic / supratherapeutic doses of the respective drugs in order to obtain a first estimate of risk based on in vitro data. In addition, AOPs were used to test whether the quantitative key event relationships between key events allow prediction of downstream effects and effects on the adverse outcome (AO) based on measurements of an early key event. Predictions of cytotoxicity from the mathematical rela-tionships showed good concordance with measured cytotoxicity after treatment with colistin and polymyxin b nonapeptide. The work also revealed uncertainties and limitations of the ap-plied strategy, which have a significant impact on the prediction and on a risk assessment based on in vitro results. N2 - Der Bericht des US National Research Council (NRC) „Toxicity Testing in the 21st Century: A Vision and a strategy (Tox21)“, der 2007 veröffentlicht wurde, sieht einen vollständigen Paradigmenwechsel in der Toxizitätsprüfung vor. Ein zentraler Aspekt des Berichts beinhaltet den Übergang von apikal ermittelten Endpunkten für Toxizität in in vivo Studien, zu mehr mechanistisch basierten in vitro Tests. Um den Übergang zu erleichtern und den Paradigmen-wechsel in der Prüfung auf Toxizität zu unterstützen, wird das Adverse Outcome Pathway (AOP) Konzept als pragmatisches Instrument weithin anerkannt. In dieser Arbeit wurde das AOP Konzept angewandt, um neue Ansätze zur Prüfung auf systemische Toxizität zu unter-suchen. Dazu wurden AOPs für proximale Tubulusschäden, die durch lysosomale Überladung und Inhibition der mtDNA Polymerase- initiiert werden, entwickelt. Diese AOPs wurden als mechanistische Grundlage für die Entwicklung von mechanistisch relevanten in vitro Tests für jedes Schlüsselereignis (KE) verwendet. Um die entwickelten in vitro Tests experimentell zu unterstützen, wurden proximale Tubuluszellen aus der Ratte (NRK-52E) und aus dem Men-schen (RPTEC/TERT1) mit Hilfe von Modellsubstanzen behandelt. Zur Messung der Störung der lysosomalen Funktion im AOP – Rezeptor-vermittelte Endozytose und lysosomale Überla-dung wurden Polymyxin-Antibiotika (Polymyxin B, Colistin, Polymyxin B Nonapeptid) als Modellsubstanzen verwendet. Die gestörte Expression des lysosomal assoziierten Membran-proteins 1/2 (LAMP 1/2) (KE1) und die Cathepsin D Freisetzung (KE2) wurden mittels Im-munofluoreszenztechnik bestimmt und die Zytotoxizität (KE3) mittels CellTiter-Glo® Zellvia-bilitätstest gemessen. Zwischen den Zelllinien wurden signifikante Unterschiede in der Auf-nahme von Polymyxinen und der Empfindlichkeit beobachtet, was die Bedeutung der in vitro Biokinetik zur Definition eines geeigneten Ausgangspunktes für die Risikobewertung unter-streicht. Im Vergleich zur in vivo Situation, konnte eine eindeutige Expression von relevanten Trans-portern wie Megalin und Cubilin auf mRNA und Proteinebene in den verwendeten Zelllinien (RPTEC/TERT1 und NRK-52E) nicht gezeigt werden, was eine zusätzliche Integration von quantitativen in vitro zu in vivo Extrapolationen (QIVIVE) unabdingbar macht. Die Integrati-on von QIVIVE durch Projektpartner der Universität Utrecht zeigte eine Verbesserung der modellierten biokinetischen Werte für Polymyxin B. Zur Bestimmung des ersten Schlüsseler-eignisse, (KE1) Depletion von mitochondrialer DNA, im AOP – Hemmung der mitochondria-len DNA Polymerase-, wurde nach Behandlung mit Modellsubstanzen (Adefovir, Cidofovir, Tenofovir, Adefovirdipivoxil, Tenofovirdisoproxil Fumarat) eine RT-qPCR Methode verwen-det, um die mtDNA Kopienzahl zu bestimmen. Die mitochondriale Toxizität (KE2) wurde mittels eines hochauflösenden Bildgebungsverfahrens und MitoTracker® vom Projektpartner des Fraunhofer Institut in Hamburg gemessen, während die Zytotoxizität (KE3) mittels Cel-lTiter-Glo® Zellviabilitätstest ermittelt wurde. Entgegen der mechanistischen Hypothese des AOPs – Hemmung der mitochondrialen DNA Polymerase-, führte eine 24 h Behandlung mit den Modellsubstanzen eher zu einer Erhöhung als zu einer Verringerung der mtDNA-Kopienzahl (KE1). Auch wurden nur geringe Auswirkungen auf die mitochondriale Toxizität (KE2) und Zytotoxizität (KE3) beobachtet. Die Behandlung von RPTEC/TERT1 Zellen über einen Zeitraum von 14 Tagen zeigte eine leichte Abnahme der mtDNA Kopienzahl nach Be-handlung mit Adefovirdipivoxil und Tenofovirdisoproxil Fumarat, was den Bedarf an zeit-aufgelösten Daten und Einschränkungen von kurzfristigen in vitro Systemen unterstreicht. Um eine erste Einschätzung für die Risikobewertung basierend auf in vitro Daten zu erhalten, wurden aus den erhaltenen in vitro Daten für jedes KE mögliche Ausgangspunkte (Points of Departure (PoD)) berechnet. Dazu wurden gängige in vitro PoDs berechnet, wie die Effekt-konzentration, bei der 10 % bzw. 20 % Effekt gemessen wurden (EC10, EC20), die höchste Konzentration ohne Wirkung (no observed effect Konzentration (NOEC)), die niedrigste Konzentration mit beobachteter Wirkung (lowest observed effect Konzentration (LOEC)), die Benchmark 10 % (unterer / obere) Konzentrationen (BMC10, BMCL10, BMCU10) und eine modellierte nicht-toxische Konzentration (NtC). Diese wurden dann mit Serum- bzw. Ge-webskonzentrationen aus in vivo Studien verglichen, die nach Gabe therapeutischer / suprathe-rapeutischer Dosen gemessen wurden. Zusätzlich wurde überprüft, ob es mit Hilfe von quanti-tativen Beziehungen zwischen Schlüsselereignissen möglich ist, basierend auf der Bestimmung früher Schlüsselereignisse nachfolgende Effekte vorherzusagen. Diese Untersuchungen zeig-ten eine gute Korrelation der aus den mathematischen Beziehungen modellierten Daten mit den tatsächlich gemessenen Werten der Zytotoxizität der Modellsubstanzen Colistin und Po-lymyxin B-Nonapeptid. Im Rahmen der Arbeit wurden auch Unsicherheiten und Limitationen der Strategie deutlich, die maßgebliche Auswirkungen auf die Vorhersage und auf die Risiko-bewertung basierend auf in vitro Resultaten haben. KW - Adverse outcome pathway (AOP) KW - Nephrotoxicity KW - In vitro testing KW - QIVIVE KW - Risk Assessment Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264842 ER - TY - JOUR A1 - Jeanclos, Elisabeth A1 - Schlötzer, Jan A1 - Hadamek, Kerstin A1 - Yuan-Chen, Natalia A1 - Alwahsh, Mohammad A1 - Hollmann, Robert A1 - Fratz, Stefanie A1 - Yesilyurt-Gerhards, Dilan A1 - Frankenbach, Tina A1 - Engelmann, Daria A1 - Keller, Angelika A1 - Kaestner, Alexandra A1 - Schmitz, Werner A1 - Neuenschwander, Martin A1 - Hergenröder, Roland A1 - Sotriffer, Christoph A1 - von Kries, Jens Peter A1 - Schindelin, Hermann A1 - Gohla, Antje T1 - Glycolytic flux control by drugging phosphoglycolate phosphatase JF - Nature Communications N2 - Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates. KW - phosphoglycolate phosphatase KW - glycolytic flux control KW - intrinsic metabolism Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300928 VL - 13 IS - 1 ER - TY - JOUR A1 - Mally, Angela A1 - Jarzina, Sebastian T1 - Mapping adverse outcome pathways for kidney injury as a basis for the development of mechanism-based animal-sparing approaches to assessment of nephrotoxicity JF - Frontiers in Toxicology N2 - In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance). KW - adverse outcome pathway KW - nephrotoxicity KW - protein alkylation KW - lysosomal disruption KW - mitochondrial DNA polymerase γ Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284405 SN - 2673-3080 VL - 4 ER - TY - JOUR A1 - Maurer, Wiebke A1 - Hartmann, Nico A1 - Argyriou, Loukas A1 - Sossalla, Samuel A1 - Streckfuss-Bömeke, Katrin T1 - Generation of homozygous Na\(_{v}\)1.8 knock-out iPSC lines by CRISPR Cas9 genome editing to investigate a potential new antiarrhythmic strategy JF - Stem Cell Research N2 - The sodium channel Na\(_{v}\)1.8, encoded by SCN10A, is reported to contribute to arrhythmogenesis by inducing the late I\(_{Na}\) and thereby enhanced persistent Na\(^{+}\) current. However, its exact electrophysiological role in cardiomyocytes remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) with a homozygous SCN10A knock-out from a healthy iPSC line by CRISPR Cas9 genome editing. The edited iPSCs maintained full pluripotency, genomic integrity, and spontaneous in vitro differentiation capacity. The iPSCs are able to differentiate into iPSC-cardiomyocytes, hence making it possible to investigate the role of Na\(_{v}\)1.8 in the heart. KW - arrhythmogenesis KW - cardiomyocytes KW - induced pluripotent stem cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300936 VL - 60 ER - TY - THES A1 - Bathe-Peters, Marc T1 - Spectroscopic approaches for the localization and dynamics of β\(_1\)- and β\(_2\)-adrenergic receptors in cardiomyocytes T1 - Spektroskopieansätze zur Bestimmung der Lokalisation und Dynamiken von β\(_1\)- und β\(_2\)-Adrenozeptoren in Kardiomyozyten N2 - In the heart the β\(_1\)-adrenergic receptor (AR) and the β\(_2\)-AR, two prototypical G protein-coupled receptors (GPCRs), are both activated by the same hormones, namely adrenaline and noradrenaline. Both receptors couple to stimulatory G\(_s\) proteins, mediate an increase in cyclic adenosine monophosphate (cAMP) and influence the contractility and frequency of the heart upon stimulation. However, activation of the β\(_1\)-AR, not the β\(_2\)-AR, lead to other additional effects, such as changes in gene transcription resulting in cardiac hypertrophy, leading to speculations on how distinct effects can arise from receptors coupled to the same downstream signaling pathway. In this thesis the question of whether this distinct behavior may originate from a differential localization of these two receptors in adult cardiomyocytes is addressed. Therefore, fluorescence spectroscopy tools are developed and implemented in order to elucidate the presence and dynamics of these endogenous receptors at the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. This allows the visualization of confined localization and diffusion of the β\(_2\)-AR to the T-tubular network at endogenous expression. In contrast, the β\(_1\)-AR is found diffusing at both the outer plasma membrane and the T-tubules. Upon overexpression of the β\(_2\)-AR in adult transgenic cardiomyocytes, the receptors experience a loss of this compartmentalization and are also found at the cell surface. These data suggest that distinct signaling and functional effects can be controlled by specific cell surface targeting of the receptor subtypes. The tools at the basis of this thesis work are a fluorescent adrenergic antagonist in combination of fluorescence fluctuation spectroscopy to monitor the localization and dynamics of the lowly expressed adrenergic receptors. Along the way to optimizing these approaches, I worked on combining widefield and confocal imaging in one setup, as well as implementing a stable autofocus mechanism using electrically tunable lenses. N2 - Im Herzen werden der β\(_1\)-adrenerge Rezeptor (AR) und der β\(_2\)-AR, zwei prototypische GPCR, durch die Hormone Adrenalin und Noradrenalin aktiviert. Dabei interagieren beide Rezeptoren mit dem stimulatorischen G\(_s\) Protein, bewirken eine Erhöhung des cyclischen Adenosinmonophosphates (cAMP) und beeinflussen die Kontraktionskraft und Frequenz des Herzens nach einem Stimulus. Jedoch hat die Aktivierung des β\(_1\)-ARs, nicht des β\(_2\)-ARs, auch weitere Effekte, wie z.B. Veränderungen in der Transkription von Genen. Dies wiederum führt zu Spekulationen, wie solch unterschiedliche Effekte von Rezeptoren hervorgerufen werden können, die gleiche Signalwege bedienen. In dieser Arbeit wird untersucht, ob dieses unterschiedliche Verhalten durch eine ungleiche Verteilung dieser beiden Rezeptoren in adulten Kardiomyozyten hervorgerufen werden könnte. Dazu wird die Lokalisation und die Dynamik dieser endogenen Rezeptoren in der Plasmamembran sowie im T-tubulären Netzwerk von intakten adulten Kardiomyozyten, unter Entwicklung und Verwendung hochsensitiver Fluoreszenzspektroskopiemethoden, bestimmt. Dies ermöglicht die örtliche und dynamische Eingrenzung des β\(_2\)-adrenergen Rezeptors unter endogener Expression ausschließlich auf das T-tubuläre Netzwerk. Dementgegen stellt sich heraus, dass sich der β\(_1\)-adrenerge Rezeptor ubiquitär auf der äußeren Membran und den T-Tubuli befindet und diffundiert. In β\(_2\)-AR überexprimierenden transgenen Kardiomyozyten hingegen werden diese Kompartments nicht beibehalten und es findet eine Umverteilung der Rezeptoren, auch unter Einbezug der Zelloberfläche, statt. Diese Daten können stärker darauf hindeuten, dass einige Rezeptorsubtypen sich gezielt und spezifisch bestimmte Zelloberflächen aussuchen, um somit ihre verschiedenen Signale und funktionären Effekte erzeugen zu können. Zu den Techniken, die in dieser Arbeit die Bestimmung der Lokalisation und der Dynamiken der niedrig exprimierten adrenergen Rezeptoren zulassen, gehört die Anwendung von Fluoreszenzspektroskopiemethoden in Kombination mit einem fluoreszierenden β-adrenergen Antagonisten. Weitere Techniken, die im Rahmen dieser Arbeit entwickelt wurden und in weiterführenden Studien aufschlussreiche Erkenntnisse liefern könnten, umfassen die Entwicklung eines Setups aus einer Kombination aus Weitfeld- und Konfokalmikroskopie und die Implementierung eines stabilen Autofokus mit Hilfe einer elektrisch veränderbaren Linse. KW - G-Protein gekoppelte Rezeptoren KW - Beta-Adrenozeptor KW - Kardiomyozyt KW - Fluoreszenzmikroskopie KW - Fluoreszenzkorrelationsspektroskopie KW - Fluorescence KW - Fluorescence Microscopy KW - G Protein-Coupled Receptor KW - Autofocus KW - Microscopy KW - Beta-Adrenergic Receptor KW - Cardiomyocyte KW - Fluorescence Correlation Spectroscopy KW - FCS KW - GPCR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258126 ER - TY - JOUR A1 - Lorenz, Kristina A1 - Rosner, Marsha Rich T1 - Harnessing RKIP to combat heart disease and cancer JF - Cancers N2 - Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity. KW - RKIP KW - ERK1/2 KW - PKA KW - βAR KW - heart failure KW - cancer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262185 SN - 2072-6694 VL - 14 IS - 4 ER -