TY - THES A1 - Hajer, Jan T1 - Mercury Telluride Nanowires for Topological Quantum Transport T1 - Quecksilbertellurid-Nanodrähte für Quantentransport-Untersuchungen N2 - Novel appraches to the molecular beam epitaxy of core-shell nanowires in the group II telluride material system were explored in this work. Significant advances in growth spurred the development of a flexible and reliable platform for a charge transport characterization of the topological insulator HgTe in a tubular nanowire geometry. The transport results presented provide an important basis for the design of future studies that strive for the experimental realization of topological charge transport in the quantum wire limit. N2 - Die vorliegende Arbeit befasst sich mit der Herstellung und Charakterisierung von Nanodraht-Heterostrukturen, die den Topologischen Isolator HgTe enthalten. Bedeutende Fortschritte bei der Probenherstellung ermöglichten die Entwicklung einer flexiblen und zuverlässigen Plattform für Ladungstransportuntersuchungen. Die Ergebnisse dieser Transportuntersuchung bieten eine wichtige Grundlage für die Planung zukünftiger Studien, die den experimentellen Nachweis von topologischem Ladungstransport in quasi-eindimensionalen HgTe-Nanostrukturen zum Ziel haben. KW - Quecksilbertellurid KW - Nanodraht KW - Halbleiter-Supraleiter-Kontakt KW - Topologischer Isolator KW - Core-shell KW - Nanowires KW - Vapor-liquid-solid KW - Molecular beam epitaxy KW - HgTe KW - CdTe KW - ZnTe KW - Aharonov-Bohm KW - Shapiro Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293222 ER - TY - JOUR A1 - Pfenning, Andreas A1 - Krüger, Sebastian A1 - Jabeen, Fauzia A1 - Worschech, Lukas A1 - Hartmann, Fabian A1 - Höfling, Sven T1 - Single-photon counting with semiconductor resonant tunneling devices JF - Nanomaterials N2 - Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown. KW - single-photon detectors KW - resonant tunneling diode KW - photon counting KW - III–V semiconductor devices Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281922 SN - 2079-4991 VL - 12 IS - 14 ER - TY - JOUR A1 - Vogel, Patrick A1 - Rückert, Martin Andreas A1 - Friedrich, Bernhard A1 - Tietze, Rainer A1 - Lyer, Stefan A1 - Kampf, Thomas A1 - Hennig, Thomas A1 - Dölken, Lars A1 - Alexiou, Christoph A1 - Behr, Volker Christian T1 - Critical Offset Magnetic PArticle SpectroScopy for rapid and highly sensitive medical point-of-care diagnostics JF - Nature Communications N2 - Magnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties. Specific measurement of such binding states is of high interest but currently limited to highly sensitive techniques such as ELISA or flow cytometry, which are relatively inflexible, difficult to handle, expensive and time-consuming. Here we report a method named COMPASS (Critical-Offset-Magnetic-Particle-SpectroScopy), which is based on a critical offset magnetic field, enabling sensitive detection to minimal changes in mobility of MNP ensembles, e.g., resulting from SARS-CoV-2 antibodies binding to the S antigen on the surface of functionalized MNPs. With a sensitivity of 0.33 fmole/50 µl (≙7 pM) for SARS-CoV-2-S1 antibodies, measured with a low-cost portable COMPASS device, the proposed technique is competitive with respect to sensitivity while providing flexibility, robustness, and a measurement time of seconds per sample. In addition, initial results with blood serum demonstrate high specificity. KW - biochemical assays KW - characterization and analytical techniques KW - magnetic properties and materials KW - nanoparticles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300893 VL - 13 ER - TY - JOUR A1 - Stühler, R. A1 - Kowalewski, A. A1 - Reis, F. A1 - Jungblut, D. A1 - Dominguez, F. A1 - Scharf, B. A1 - Li, G. A1 - Schäfer, J. A1 - Hankiewicz, E. M. A1 - Claessen, R. T1 - Effective lifting of the topological protection of quantum spin Hall edge states by edge coupling JF - Nature Communications N2 - The scientific interest in two-dimensional topological insulators (2D TIs) is currently shifting from a more fundamental perspective to the exploration and design of novel functionalities. Key concepts for the use of 2D TIs in spintronics are based on the topological protection and spin-momentum locking of their helical edge states. In this study we present experimental evidence that topological protection can be (partially) lifted by pairwise coupling of 2D TI edges in close proximity. Using direct wave function mapping via scanning tunneling microscopy/spectroscopy (STM/STS) we compare isolated and coupled topological edges in the 2D TI bismuthene. The latter situation is realized by natural lattice line defects and reveals distinct quasi-particle interference (QPI) patterns, identified as electronic Fabry-Pérot resonator modes. In contrast, free edges show no sign of any single-particle backscattering. These results pave the way for novel device concepts based on active control of topological protection through inter-edge hybridization for, e.g., electronic Fabry-Pérot interferometry. KW - topological insulators KW - two-dimensional materials Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300886 VL - 13 ER - TY - JOUR A1 - Karak, Suvendu A1 - Stepanenko, Vladimir A1 - Addicoat, Matthew A. A1 - Keßler, Philipp A1 - Moser, Simon A1 - Beuerle, Florian A1 - Würthner, Frank T1 - A Covalent Organic Framework for Cooperative Water Oxidation JF - Journal of the American Chemical Society N2 - The future of water-derived hydrogen as the “sustainable energy source” straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst’s performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 μmol L\(^{–1}\) s\(^{–1}\) (second-order rate constant k ≈ 1650 μmol L s\(^{–1}\) g\(^{–2}\)). The catalyst also proves its exceptional activity (k ≈ 1600 μmol L s\(^{–1}\) g\(^{–2}\)) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20–30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart. KW - water oxidation KW - sustainable energy source KW - covalent organic framework KW - catalyst KW - crystalline KW - catalysis KW - nanoparticles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287591 UR - https://pubs.acs.org/doi/10.1021/jacs.2c07282 SN - 0002-7863 VL - 144 IS - 38 ER - TY - JOUR A1 - Rothmayr, Florian A1 - Guarin Castro, Edgar David A1 - Hartmann, Fabian A1 - Knebl, Georg A1 - Schade, Anne A1 - Höfling, Sven A1 - Koeth, Johannes A1 - Pfenning, Andreas A1 - Worschech, Lukas A1 - Lopez-Richard, Victor T1 - Resonant tunneling diodes: mid-infrared sensing at room temperature JF - Nanomaterials N2 - Resonant tunneling diode photodetectors appear to be promising architectures with a simple design for mid-infrared sensing operations at room temperature. We fabricated resonant tunneling devices with GaInAsSb absorbers that allow operation in the 2–4 μm range with significant electrical responsivity of 0.97 A/W at 2004 nm to optical readout. This paper characterizes the photosensor response contrasting different operational regimes and offering a comprehensive theoretical analysis of the main physical ingredients that rule the sensor functionalities and affect its performance. We demonstrate how the drift, accumulation, and escape efficiencies of photogenerated carriers influence the electrostatic modulation of the sensor's electrical response and how they allow controlling the device's sensing abilities. KW - resonant tunneling diode KW - mid-infrared sensing KW - photosensor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267152 SN - 2079-4991 VL - 12 IS - 6 ER - TY - JOUR A1 - Gabel, Judith A1 - Pickem, Matthias A1 - Scheiderer, Philipp A1 - Dudy, Lenart A1 - Leikert, Berengar A1 - Fuchs, Marius A1 - Stübinger, Martin A1 - Schmitt, Matthias A1 - Küspert, Julia A1 - Sangiovanni, Giorgio A1 - Tomczak, Jan M. A1 - Held, Karsten A1 - Lee, Tien–Lin A1 - Claessen, Ralph A1 - Sing, Michael T1 - Toward Functionalized Ultrathin Oxide Films: The Impact of Surface Apical Oxygen JF - Advanced Electronic Materials N2 - Thin films of transition metal oxides open up a gateway to nanoscale electronic devices beyond silicon characterized by novel electronic functionalities. While such films are commonly prepared in an oxygen atmosphere, they are typically considered to be ideally terminated with the stoichiometric composition. Using the prototypical correlated metal SrVO\(_{3}\) as an example, it is demonstrated that this idealized description overlooks an essential ingredient: oxygen adsorbing at the surface apical sites. The oxygen adatoms, which are present even if the films are kept in an ultrahigh vacuum environment and not explicitly exposed to air, are shown to severely affect the intrinsic electronic structure of a transition metal oxide film. Their presence leads to the formation of an electronically dead surface layer but also alters the band filling and the electron correlations in the thin films. These findings highlight that it is important to take into account surface apical oxygen or—mutatis mutandis—the specific oxygen configuration imposed by a capping layer to predict the behavior of ultrathin films of transition metal oxides near the single unit-cell limit. KW - transition metal oxides KW - correlated oxides KW - electronic phase transitions KW - photoelectron spectroscopy KW - thin films Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318914 SN - 2199-160X VL - 8 IS - 4 ER - TY - JOUR A1 - Frank, Maximilian A1 - Pflaum, Jens T1 - Tuning Electronic and Ionic Transport by Carbon–Based Additives in Polymer Electrolytes for Thermoelectric Applications JF - Advanced Functional Materials N2 - Thermoelectric materials utilizing ionic transport open-up entirely new possibilities for the recuperation of waste heat. Remarkably, solid state electrolytes which have entered the focus of battery research in recent years turn-out to be promising candidates also for ionic thermoelectrics. Here, the dynamics of ionic transport and thermoelectric properties of a methacrylate based polymer blend in combination with a lithium salt is analyzed. Impedance spectroscopy data indicates the presence of just one transport mechanism irrespective of lithium salt concentration. In contrast, the temperature dependent ionic conductivity increases with salt concentration and can be ascribed to a Vogel–Fulcher–Tammann (VFT) behavior. The obtained Seebeck coefficients of 2 mV K\(^{−1}\) allow for high power outputs while the polymer matrix maintains the temperature gradient by its low thermal conductivity. Adding multi-walled carbon nanotubes to the polymer matrix allows for variation of the Seebeck coefficient as well as the ionic and electronic conductivities. As a result, a transition between a high temperature VFT regime and a low temperature Arrhenius regime appears at a critical temperature, T\(_{c}\), shifting upon addition of salt. The observed polarity change in Seebeck voltage at T\(_{c}\) suggests a new mode of thermoelectric operation, which is demonstrated by a proof-of-concept mixed electronic-ionic-thermoelectric generator. KW - carbon nanotubes KW - thermoelectric generators KW - thermoelectric characterization KW - polymer electrolytes KW - impedance spectroscopy KW - electrochemistry Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318908 SN - 1616-301X VL - 32 IS - 32 ER - TY - JOUR A1 - Li, Donghai A1 - Shan, Hangyong A1 - Rupprecht, Christoph A1 - Knopf, Heiko A1 - Watanabe, Kenji A1 - Taniguchi, Takashi A1 - Qin, Ying A1 - Tongay, Sefaattin A1 - Nuß, Matthias A1 - Schröder, Sven A1 - Eilenberger, Falk A1 - Höfling, Sven A1 - Schneider, Christian A1 - Brixner, Tobias T1 - Hybridized exciton-photon-phonon states in a transition-metal-dichalcogenide van-der-Waals heterostructure microcavity JF - Physical Review Letters N2 - Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs. KW - strong coupling KW - laser spectroscopy KW - transition metal dichalcogenide KW - coherent multidimensional spectroscopy KW - exciton Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351303 UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.087401 SN - 1079-7114 ET - accepted version ER -