TY - JOUR A1 - Hartmannsberger, Beate A1 - Scriba, Sabrina A1 - Guidolin, Carolina A1 - Becker, Juliane A1 - Mehling, Katharina A1 - Doppler, Kathrin A1 - Sommer, Claudia A1 - Rittner, Heike L. T1 - Transient immune activation without loss of intraepidermal innervation and associated Schwann cells in patients with complex regional pain syndrome JF - Journal of Neuroinflammation N2 - Background Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. Methods We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. Results Intraepidermal Schwann cells were detected in human skin of the finger—but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other—but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. Conclusions Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary. KW - complex regional pain syndrome KW - IENFD KW - nociceptive Schwann cells KW - mast cells KW - Langerhans cells KW - tissue resident T cells KW - dermal B cells KW - skin punch biopsy KW - chronic constriction nerve injury Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357164 VL - 21 ER - TY - JOUR A1 - Klitsch, Alexander A1 - Evdokimov, Dimitar A1 - Frank, Johanna A1 - Thomas, Dominique A1 - Saffer, Nadine A1 - Meyer zu Altenschildesche, Caren A1 - Sisignano, Marco A1 - Kampik, Daniel A1 - Malik, Rayaz A. A1 - Sommer, Claudia A1 - Üçeyler, Nurcan T1 - Reduced association between dendritic cells and corneal sub‐basal nerve fibers in patients with fibromyalgia syndrome JF - Journal of the Peripheral Nervous System N2 - In our study, we aimed at investigating corneal langerhans cells (LC) in patients with fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) as potential contributors to corneal small fiber pathology. We enrolled women with FMS (n = 134) and SFN (n = 41) who underwent neurological examination, neurophysiology, prostaglandin analysis in tear fluid, and corneal confocal microscopy (CCM). Data were compared with those of 60 age‐matched female controls. After screening for dry eye disease, corneal LC were counted and sub‐classified as dendritic (dLC) and non‐dendritic (ndLC) cells with or without nerve fiber association. We further analyzed corneal nerve fiber density (CNFD), length (CNFL), and branch density (CNBD). Neurological examination indicated deficits of small fiber function in patients with SFN. Nerve conduction studies were normal in all participants. Dry eye disease was more prevalent in FMS (17%) and SFN (28%) patients than in controls (5%). Tear fluid prostaglandin levels did not differ between FMS patients and controls. While corneal LC density in FMS and SFN patients was not different from controls, there were fewer dLC in association with nerve fibers in FMS and SFN patients than in controls (P < .01 each). Compared to controls, CNFL was lower in FMS and SFN patients (P < .05 each), CNFD was lower only in FMS patients (P < .05), and CNBD was lower only in SFN patients (P < .001). There was no difference in any CCM parameter between patients with and without dry eyes. Our data indicate changes in corneal innervation and LC distribution in FMS and SFN, potentially based on altered LC signaling. KW - corneal confocal microscopy KW - fibromyalgia syndrome KW - Langerhans cells KW - pain KW - small fiber neuropathy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214150 VL - 25 IS - 1 ER - TY - JOUR A1 - Lutz, Manfred B. A1 - Strobl, Herbert A1 - Schuler, Gerold A1 - Romani, Nikolaus T1 - GM-CSF monocyte-derived cells and Langerhans cells as part of the dendritic cell family JF - Frontiers in Immunology N2 - Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14\(^{+}\) peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function. KW - macrophages KW - dendritic cells KW - GM-CSF KW - monocytes KW - Langerhans cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158730 VL - 8 IS - 1388 ER -