TY - JOUR A1 - Wu, Yu A1 - Pons, Valérie A1 - Goudet, Amélie A1 - Panigai, Laetitia A1 - Fischer, Annette A1 - Herweg, Jo-Ana A1 - Kali, Sabrina A1 - Davey, Robert A. A1 - Laporte, Jérôme A1 - Bouclier, Céline A1 - Yousfi, Rahima A1 - Aubenque, Céline A1 - Merer, Goulven A1 - Gobbo, Emilie A1 - Lopez, Roman A1 - Gillet, Cynthia A1 - Cojean, Sandrine A1 - Popoff, Michel R. A1 - Clayette, Pascal A1 - Le Grand, Roger A1 - Boulogne, Claire A1 - Tordo, Noël A1 - Lemichez, Emmanuel A1 - Loiseau, Philippe M. A1 - Rudel, Thomas A1 - Sauvaire, Didier A1 - Cintrat, Jean-Christophe A1 - Gillet, Daniel A1 - Barbier, Julien T1 - ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments JF - Scientific Reports N2 - Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identifed the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efciently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases. KW - biology KW - antimicrobials KW - high-throughput screening KW - infectious diseases Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173170 VL - 7 ER - TY - JOUR A1 - Wandrey, Georg A1 - Wurzel, Joel A1 - Hoffmann, Kyra A1 - Ladner, Tobias A1 - Büchs, Jochen A1 - Meinel, Lorenz A1 - Lühmann, Tessa T1 - Probing unnatural amino acid integration into enhanced green fluorescent protein by genetic code expansion with a high-throughput screening platform JF - Journal of Biological Engineering N2 - Background Genetic code expansion has developed into an elegant tool to incorporate unnatural amino acids (uAA) at predefined sites in the protein backbone in response to an amber codon. However, recombinant production and yield of uAA comprising proteins are challenged due to the additional translation machinery required for uAA incorporation. Results We developed a microtiter plate-based high-throughput monitoring system (HTMS) to study and optimize uAA integration in the model protein enhanced green fluorescence protein (eGFP). Two uAA, propargyl-L-lysine (Plk) and (S)-2-amino-6-((2-azidoethoxy) carbonylamino) hexanoic acid (Alk), were incorporated at the same site into eGFP co-expressing the native PylRS/tRNAPyl CUA pair originating from Methanosarcina barkeri in E. coli. The site-specific uAA functionalization was confirmed by LC-MS/MS analysis. uAA-eGFP production and biomass growth in parallelized E. coli cultivations was correlated to (i) uAA concentration and the (ii) time of uAA addition to the expression medium as well as to induction parameters including the (iii) time and (iv) amount of IPTG supplementation. The online measurements of the HTMS were consolidated by end point-detection using standard enzyme-linked immunosorbent procedures. Conclusion The developed HTMS is powerful tool for parallelized and rapid screening. In light of uAA integration, future applications may include parallelized screening of different PylRS/tRNAPyl CUA pairs as well as further optimization of culture conditions. KW - protein engineering KW - amber codon suppression KW - online monitoring system KW - high-throughput screening KW - unnatural amino acid KW - bio-orthogonal chemistry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166304 VL - 10 IS - 11 ER -