TY - JOUR A1 - Bachmann, Friederike A1 - Schreder, Martin A1 - Engelhardt, Monika A1 - Langer, Christian A1 - Wolleschak, Denise A1 - Mügge, Lars Olof A1 - Dürk, Heinz A1 - Schäfer-Eckart, Kerstin A1 - Blau, Igor Wolfgang A1 - Gramatzki, Martin A1 - Liebisch, Peter A1 - Grube, Matthias A1 - Metzler, Ivana v. A1 - Bassermann, Florian A1 - Metzner, Bernd A1 - Röllig, Christoph A1 - Hertenstein, Bernd A1 - Khandanpour, Cyrus A1 - Dechow, Tobias A1 - Hebart, Holger A1 - Jung, Wolfram A1 - Theurich, Sebastian A1 - Maschmeyer, Georg A1 - Salwender, Hans A1 - Hess, Georg A1 - Bittrich, Max A1 - Rasche, Leo A1 - Brioli, Annamaria A1 - Eckardt, Kai-Uwe A1 - Straka, Christian A1 - Held, Swantje A1 - Einsele, Hermann A1 - Knop, Stefan T1 - Kinetics of renal function during induction in newly diagnosed multiple myeloma: results of two prospective studies by the German Myeloma Study Group DSMM JF - Cancers N2 - Background: Preservation of kidney function in newly diagnosed (ND) multiple myeloma (MM) helps to prevent excess toxicity. Patients (pts) from two prospective trials were analyzed, provided postinduction (PInd) restaging was performed. Pts received three cycles with bortezomib (btz), cyclophosphamide, and dexamethasone (dex; VCD) or btz, lenalidomide (len), and dex (VRd) or len, adriamycin, and dex (RAD). The minimum required estimated glomerular filtration rate (eGFR) was >30 mL/min. We analyzed the percent change of the renal function using the International Myeloma Working Group (IMWG) criteria and Kidney Disease: Improving Global Outcomes (KDIGO)-defined categories. Results: Seven hundred and seventy-two patients were eligible. Three hundred and fifty-six received VCD, 214 VRd, and 202 RAD. VCD patients had the best baseline eGFR. The proportion of pts with eGFR <45 mL/min decreased from 7.3% at baseline to 1.9% PInd (p < 0.0001). Thirty-seven point one percent of VCD versus 49% of VRd patients had a decrease of GFR (p = 0.0872). IMWG-defined “renal complete response (CRrenal)” was achieved in 17/25 (68%) pts after VCD, 12/19 (63%) after RAD, and 14/27 (52%) after VRd (p = 0.4747). Conclusions: Analyzing a large and representative newly diagnosed myeloma (NDMM) group, we found no difference in CRrenal that occurred independently from the myeloma response across the three regimens. A trend towards deterioration of the renal function with VRd versus VCD may be explained by a better pretreatment “renal fitness” in the latter group. KW - multiple myeloma KW - renal failure KW - kidney KW - bortezomib KW - lenalidomide KW - induction regimen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234139 SN - 2072-6694 VL - 13 IS - 6 ER - TY - JOUR A1 - Toyama, Yoshitaka A1 - Werner, Rudolf A. A1 - Ruiz-Bedoya, Camilo A. A1 - Ordonez, Alvaro A. A1 - Takase, Kei A1 - Lapa, Constantin A1 - Jain, Sanjay K. A1 - Pomper, Martin G. A1 - Rowe, Steven P. A1 - Higuchi, Takahiro T1 - Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon JF - Theranostics N2 - In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology. KW - glomerular filtration rate KW - renal KW - kidney KW - renal function KW - positron emission tomography KW - nephrology KW - urology KW - molecular imaging KW - theranostics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260090 VL - 11 IS - 12 ER - TY - JOUR A1 - Assfalg, Volker A1 - Selig, Katharina A1 - Tolksdorf, Johanna A1 - van Meel, Marieke A1 - de Vries, Erwin A1 - Ramsoebhag, Anne‐Marie A1 - Rahmel, Axel A1 - Renders, Lutz A1 - Novotny, Alexander A1 - Matevossian, Edouard A1 - Schneeberger, Stefan A1 - Rosenkranz, Alexander R. A1 - Berlakovich, Gabriela A1 - Ysebaert, Dirk A1 - Knops, Noël A1 - Kuypers, Dirk A1 - Weekers, Laurent A1 - Muehlfeld, Anja A1 - Rump, Lars‐Christian A1 - Hauser, Ingeborg A1 - Pisarski, Przemyslaw A1 - Weimer, Rolf A1 - Fornara, Paolo A1 - Fischer, Lutz A1 - Kliem, Volker A1 - Sester, Urban A1 - Stippel, Dirk A1 - Arns, Wolfgang A1 - Hau, Hans‐Michael A1 - Nitschke, Martin A1 - Hoyer, Joachim A1 - Thorban, Stefan A1 - Weinmann‐Menke, Julia A1 - Heller, Katharina A1 - Banas, Bernhard A1 - Schwenger, Vedat A1 - Nadalin, Silvio A1 - Lopau, Kai A1 - Hüser, Norbert A1 - Heemann, Uwe T1 - Repeated kidney re‐transplantation—the Eurotransplant experience: a retrospective multicenter outcome analysis JF - Transplant International N2 - In Eurotransplant kidney allocation system (ETKAS), candidates can be considered unlimitedly for repeated re‐transplantation. Data on outcome and benefit are indeterminate. We performed a retrospective 15‐year patient and graft outcome data analysis from 1464 recipients of a third or fourth or higher sequential deceased donor renal transplantation (DDRT) from 42 transplant centers. Repeated re‐DDRT recipients were younger (mean 43.0 vs. 50.2 years) compared to first DDRT recipients. They received grafts with more favorable HLA matches (89.0% vs. 84.5%) but thereby no statistically significant improvement of patient and graft outcome was found as comparatively demonstrated in 1st DDRT. In the multivariate modeling accounting for confounding factors, mortality and graft loss after 3rd and ≥4th DDRT (P < 0.001 each) and death with functioning graft (DwFG) after 3rd DDRT (P = 0.001) were higher as compared to 1st DDRT. The incidence of primary nonfunction (PNF) was also significantly higher in re‐DDRT (12.7%) than in 1st DDRT (7.1%; P < 0.001). Facing organ shortage, increasing waiting time, and considerable mortality on dialysis, we question the current policy of repeated re‐DDRT. The data from this survey propose better HLA matching in first DDRT and second DDRT and careful selection of candidates, especially for ≥4th DDRT. KW - allocation KW - child KW - fourth KW - graft KW - kidney KW - loss KW - repeated KW - re‐transplantation KW - survival KW - third Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214161 VL - 33 IS - 6 SP - 617 EP - 631 ER - TY - JOUR A1 - Shepard, Blythe D. A1 - Cheval, Lydie A1 - Peterlin, Zita A1 - Firestein, Stuart A1 - Koepsell, Hermann A1 - Doucet, Alain A1 - Pluznick, Jennifer L. T1 - A Renal Olfactory Receptor Aids in Kidney Glucose Handling JF - Scientific Reports N2 - Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway. KW - olfactory receptor KW - Olfr1393 KW - kidney KW - glucose handling Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167605 VL - 6 IS - 35215 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Ordonez, Alvaro A. A1 - Sanchez-Bautista, Julian A1 - Marcus, Charles A1 - Lapa, Constantin A1 - Rowe, Steven P. A1 - Pomper, Martin G. A1 - Leal, Jeffrey P. A1 - Lodge, Martin A. A1 - Javadi, Mehrbod S. A1 - Jain, Sanjay K. A1 - Higuchi, Takahiro T1 - Novel functional renal PET imaging with 18F-FDS in human subjects JF - Clinical Nuclear Medicine N2 - The novel PET probe 2-deoxy-2-18F-fluoro-D-sorbitol (18F-FDS) has demonstrated favorable renal kinetics in animals. We aimed to elucidate its imaging properties in two human volunteers. 18F-FDS was produced by a simple one-step reduction from 18F-FDG. On dynamic renal PET, the cortex was delineated and activity gradually transited in the parenchyma, followed by radiotracer excretion. No adverse effects were reported. Given the higher spatiotemporal resolution of PET relative to conventional scintigraphy, 18F-FDS PET offers a more thorough evaluation of human renal kinetics. Due to its simple production from 18F-FDG, 18F-FDS is virtually available at any PET facility with radiochemistry infrastructure. KW - 2-deoxy-2-18F-fluoro-D-sorbitol KW - Positronen-Emissions-Tomografie KW - 18F-FDS KW - renal imaging KW - Positron-Emission Tomography KW - split renal function KW - kidney Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174634 SN - 0363-9762 VL - 44 IS - 5 ER - TY - JOUR A1 - Betz, Boris A1 - Schneider, Reinhard A1 - Kress, Tobias A1 - Schick, Martin Alexander A1 - Wanner, Christoph A1 - Sauvant, Christoph T1 - Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury JF - PPAR Research N2 - Background. Nitric oxide (NO)-signal transduction plays an important role in renal ischemia/reperfusion (I/R) injury. NO produced by endothelial NO-synthase (eNOS) has protective functions whereas NO from inducible NO-synthase (iNOS) induces impairment. Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg) was administered i.p. to SD-rats (f) subjected to bilateral renal ischemia (60 min). Following 24 h of reperfusion, inulin-and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3) was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion) and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury. KW - dysfunction KW - activated-receptor gamma KW - ischemia-reperfusion injury KW - failure KW - kidney KW - agnoists KW - mices KW - inos KW - pathophysiology KW - pioglitazone Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130872 VL - 2012 IS - Article ID 219319 ER - TY - JOUR A1 - Weidemann, Frank A1 - Sanchez-Nino, Maria D. A1 - Politei, Juan A1 - Oliveira, João-Paulo A1 - Wanner, Christoph A1 - Warnock, David G. A1 - Oritz, Alberto T1 - Fibrosis: a key feature of Fabry disease with potential therapeutic implications JF - Orphanet Journal of Rare Diseases N2 - Fabry disease is a rare X-linked hereditary disease caused by mutations in the AGAL gene encoding the lysosomal enzyme alpha-galactosidase A. Enzyme replacement therapy (ERT) is the current cornerstone of Fabry disease management. Involvement of kidney, heart and the central nervous system shortens life span, and fibrosis of these organs is a hallmark of the disease. Fibrosis was initially thought to result from tissue ischemia secondary to endothelial accumulation of glycosphingolipids in the microvasculature. However, despite ready clearance of endothelial deposits, ERT is less effective in patients who have already developed fibrosis. Several potential explanations of this clinical observation may impact on the future management of Fabry disease. Alternative molecular pathways linking glycosphingolipids and fibrosis may be operative; tissue injury may recruit secondary molecular mediators of fibrosis that are unresponsive to ERT, or fibrosis may represent irreversible tissue injury that limits the therapeutic response to ERT. We provide an overview of Fabry disease, with a focus on the assessment of fibrosis, the clinical consequences of fibrosis, and recent advances in understanding the cellular and molecular mechanisms of fibrosis that may suggest novel therapeutic approaches to Fabry disease. KW - Fabry KW - fibrosis KW - podocyte KW - Lyso-Gb3 KW - kidney KW - enzyme replacement therapy KW - alpha-galactosidase-A KW - focal semental glomerulosclerosis KW - cardiovascular magnetic-resonance KW - left-ventricular hypertrophy KW - biopsy findings KW - agalsidase-beta KW - natural-history data KW - cardiac energy metabolism KW - randomized controlled trial Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124773 SN - 1750-1172 VL - 8 IS - 116 ER - TY - JOUR A1 - Krzymanski, M. A1 - Waaga, A. M. A1 - Ulrichs, Karin A1 - Müller-Ruchholtz, Wolfgang T1 - Long-standing rat kidney graft survival by a combination of organ perfusion with MHC class II monoclonal antibody and immunosuppression with reduced doses of 15-deoxyspergualin. N2 - No abstract available KW - Niere KW - Ratte KW - MHC Klasse II KW - kidney KW - rat Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64442 ER -