TY - JOUR A1 - Rockel, Anna F. A1 - Wagner, Nicole A1 - Spenger, Peter A1 - Ergün, Süleyman A1 - Wörsdörfer, Philipp T1 - Neuro-mesodermal assembloids recapitulate aspects of peripheral nervous system development \(in\) \(vitro\) JF - Stem Cell Reports N2 - Summary Here we describe a novel neuro-mesodermal assembloid model that recapitulates aspects of peripheral nervous system (PNS) development such as neural crest cell (NCC) induction, migration, and sensory as well as sympathetic ganglion formation. The ganglia send projections to the mesodermal as well as neural compartment. Axons in the mesodermal part are associated with Schwann cells. In addition, peripheral ganglia and nerve fibers interact with a co-developing vascular plexus, forming a neurovascular niche. Finally, developing sensory ganglia show response to capsaicin indicating their functionality. The presented assembloid model could help to uncover mechanisms of human NCC induction, delamination, migration, and PNS development. Moreover, the model could be used for toxicity screenings or drug testing. The co-development of mesodermal and neuroectodermal tissues and a vascular plexus along with a PNS allows us to investigate the crosstalk between neuroectoderm and mesoderm and between peripheral neurons/neuroblasts and endothelial cells. Highlights •Novel neuro-mesodermal assembloid model of peripheral nervous system development •Model covers neural crest cell induction, migration, and ganglion formation •Ganglia send projections to the mesodermal as well as neural compartment •Peripheral ganglia and nerve fibers interact with a co-developing vascular plexus KW - peripheral nervous system KW - neural crest KW - sensory ganglia KW - sensory neuron KW - vasculature KW - blood vessel KW - neural organoid KW - mesodermal organoid KW - assembloid KW - human induced pluripotent stem cells Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349925 SN - 2213-6711 VL - 18 IS - 5 ER - TY - JOUR A1 - Brumberg, Joachim A1 - Kuzkina, Anastasia A1 - Lapa, Constantin A1 - Mammadova, Sona A1 - Buck, Andreas A1 - Volkmann, Jens A1 - Sommer, Claudia A1 - Isaias, Ioannis U. A1 - Doppler, Kathrin T1 - Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy JF - Neurobiology of Disease N2 - Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [\(^{123}\)I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical workup including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [\(^{123}\)I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [\(^{123}\)I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 +/- 0.63 vs. 2.91 +/- 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 +/- 0.51 vs. 2.74 +/- 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap. KW - peripheral nervous system KW - Parkinson's disease KW - skin biopsy KW - MIBG scintigraphy KW - multiple system atrophy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260061 VL - 153 ER - TY - JOUR A1 - Jende, Johann M. E. A1 - Kender, Zoltan A1 - Rother, Christian A1 - Alvarez-Ramos, Lucia A1 - Groener, Jan B. A1 - Pham, Mirko A1 - Morgenstern, Jakob A1 - Oikonomou, Dimitrios A1 - Hahn, Artur A1 - Juerchott, Alexander A1 - Kollmer, Jennifer A1 - Heiland, Sabine A1 - Kopf, Stefan A1 - Nawroth, Peter P. A1 - Bendszus, Martin A1 - Kurz, Felix T. T1 - Diabetic Polyneuropathy Is Associated With Pathomorphological Changes in Human Dorsal Root Ganglia: A Study Using 3T MR Neurography JF - Frontiers in Neuroscience N2 - Diabetic neuropathy (DPN) is one of the most severe and yet most poorly understood complications of diabetes mellitus. In vivo imaging of dorsal root ganglia (DRG), a key structure for the understanding of DPN, has been restricted to animal studies. These have shown a correlation of decreased DRG volume with neuropathic symptom severity. Our objective was to investigate correlations of DRG morphology and signal characteristics at 3 Tesla (3T) magnetic resonance neurography (MRN) with clinical and serological data in diabetic patients with and without DPN. In this cross-sectional study, participants underwent 3T MRN of both L5 DRG using an isotropic 3D T2-weighted, fat-suppressed sequence with subsequent segmentation of DRG volume and analysis of normalized signal properties. Overall, 55 diabetes patients (66 ± 9 years; 32 men; 30 with DPN) took part in this study. DRG volume was smaller in patients with severe DPN when compared to patients with mild or moderate DPN (134.7 ± 21.86 vs 170.1 ± 49.22; p = 0.040). In DPN patients, DRG volume was negatively correlated with the neuropathy disability score (r = −0.43; 95%CI = −0.66 to −0.14; p = 0.02), a measure of neuropathy severity. DRG volume showed negative correlations with triglycerides (r = −0.40; 95%CI = −0.57 to −0.19; p = 0.006), and LDL cholesterol (r = −0.33; 95%CI = −0.51 to −0.11; p = 0.04). There was a strong positive correlation of normalized MR signal intensity (SI) with the neuropathy symptom score in the subgroup of patients with painful DPN (r = 0.80; 95%CI = 0.46 to 0.93; p = 0.005). DRG SI was positively correlated with HbA1c levels (r = 0.30; 95%CI = 0.09 to 0.50; p = 0.03) and the triglyceride/HDL ratio (r = 0.40; 95%CI = 0.19 to 0.57; p = 0.007). In this first in vivo study, we found DRG morphological degeneration and signal increase in correlation with neuropathy severity. This elucidates the potential importance of MR-based DRG assessments in studying structural and functional changes in DPN. KW - diabetic polyneuropathy KW - dorsal root ganglion KW - magnetic resonance neurography KW - neuropathic pain KW - peripheral nervous system Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212459 VL - 14 ER - TY - JOUR A1 - Pauls, Dennis A1 - Blechschmidt, Christine A1 - Frantzmann, Felix A1 - el Jundi, Basil A1 - Selcho, Mareike T1 - A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster JF - Scientific Reports N2 - The modulation of an animal’s behavior through external sensory stimuli, previous experience and its internal state is crucial to survive in a constantly changing environment. In most insects, octopamine (OA) and its precursor tyramine (TA) modulate a variety of physiological processes and behaviors by shifting the organism from a relaxed or dormant condition to a responsive, excited and alerted state. Even though OA/TA neurons of the central brain are described on single cell level in Drosophila melanogaster, the periphery was largely omitted from anatomical studies. Given that OA/TA is involved in behaviors like feeding, flying and locomotion, which highly depend on a variety of peripheral organs, it is necessary to study the peripheral connections of these neurons to get a complete picture of the OA/TA circuitry. We here describe the anatomy of this aminergic system in relation to peripheral tissues of the entire fly. OA/TA neurons arborize onto skeletal muscles all over the body and innervate reproductive organs, the heart, the corpora allata, and sensory organs in the antennae, legs, wings and halteres underlining their relevance in modulating complex behaviors. KW - neural circuits KW - peripheral nervous system KW - Drosophila melanogaster Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177412 VL - 8 IS - 15314 ER - TY - JOUR A1 - Weider, Matthias A1 - Wegener, Amélie A1 - Schmitt, Christian A1 - Küspert, Melanie A1 - Hillgärtner, Simone A1 - Bösl, Michael R. A1 - Hermans-Borgmeyer, Irm A1 - Nait-Oumesmar, Brahim A1 - Wegner, Michael T1 - Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells JF - PLoS Genetics N2 - Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies. KW - peripheral nervous system KW - Hirschsprung disease KW - spinal-cord KW - boundary cap KW - differentiation KW - stem cells KW - factor Sox10 KW - mouse model KW - expression KW - Olig2 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144123 VL - 11 IS - 2 ER - TY - JOUR A1 - Schneider-Schaulies, Jürgen A1 - von Brunn, A. A1 - Schachner, M. T1 - Recombinant peripheral myelin protein P\(_o\) confers both adhesion and neurite outgrowth promoting properties N2 - To probe into the functional properties of the major peripheral myelin cell surface glycoprotein P 0 , its ability to confer adhesion and neurite outgrowth-promoting properfies was studied in cell culture. Tothis aim, Po was expressed as integral membrane glycoprotein at the surface of CV -1 cells with the help of a recombinant vaccinia virus expression system. Furthermore, the immunoglobulin-like extracellular domain of P0 (P0 -ED) was expressed as soluble profein in a bacterial expression system and used as substrafe coated to plastic dishes or as competitor in cell adhesion and neurite outgrowth-promoting assays. The adhesion of P0 -expressing CV-1 cells to P0 -ED substrafe was specifically inhibitable by polyclonal Po antibodies (54% :t 6% ). In addition, the specific interaction between Po molecules could be reduced ( 49% ± 8%) by adding soluble P0 -ED to the culture medium, demonstrating that the homophilic inter~ction between recombinant Po molecules can be mediated, at least on one partner of interacting molecules, by the unglycosylated Ig-like domain. Substrate-coated p -ED also conferred adhesion and neurite outgrowth ability to dorsal root ganglion neurons with neurites of a mean length of about 150 ,_..m. This neurite outgrowth was specifically inhibitable by soluble P" (74% ± 14%) and P 0 antibodies (65% ± 9% ). These observations indicate that Po is capable of displaying two different types of functional roles in the myelination process of . peripheral nerves: The heterophilic interaction with neurons may be responsible for the recognition between axon and myelinating Schwann cell at the onset of myelination, whereas the homophilic interacton may indicate its roJe in the selfrecognition of the apposing loops of Schwann cell surface membranes during the myelination process and in the mature compact myelin sheath. KW - Immunologie KW - immunoglobulin superfamily KW - peripheral nervous system KW - vaccinia virus KW - Po Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54841 ER - TY - JOUR A1 - Archelos, JJ A1 - Roggenbuck, K. A1 - Schneider-Schaulies, Jürgen A1 - Linington, C. A1 - Toyka, KV A1 - Hartung, H.-P. T1 - Production and characterization of monoclonal antibodies to the extracellular domain of PO N2 - Seven monoclonal antibodies were raised against the immunoglobulin-like extracellular domain of PO (POED), the major protein of peripheral nervous system myelin. Mice were immunized with purified recombinant rat PO-ED. After fusion, 7 clones (POI-P07) recognizing either recombinant, rat, mouse, or human PO-ED were selected by ELlS A and were characterized by Western blot, immunohistochemistry, and a competition assay. Antibodies belonged to the IgG or IgM class, and P04-P07, reacted with PO in fresh-frozen and paraffin-embedded sections of human or rat peripheral nerve, but not with myelin proteins of the central nervous system of either species. Epitope specificity of the antibodies was determined by a competition enzyme-linked immunosorbent assay (ELISA) and a direct ELlS A using short synthetic peptides spanning the entire extracellular domain of PO. These assays showed that POl and P02 exhibiting the same reaction pattern in Western blot and immunohistochemistry reacted with different distant epitopes of PO. Furthermore, the monoclonal antibodies P05 and P06 recognized 2 different epitopes in close proximity within the neuritogenic extracellular sequence of PO. This panel of monoclonal antibodies, each binding to a different epitope of the extracellular domain of PO, will be useful for in vitro and in vivo studies designed to explore the role of PO during myelination and in demyelinating diseases of the peripheral nervous system. KW - Immunologie KW - peripheral nervous system KW - myelin KW - epitope specificity KW - demyelination Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54889 ER -