TY - JOUR A1 - Habenstein, Jens A1 - Schmitt, Franziska A1 - Liessem, Sander A1 - Ly, Alice A1 - Trede, Dennis A1 - Wegener, Christian A1 - Predel, Reinhard A1 - Rössler, Wolfgang A1 - Neupert, Susanne T1 - Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus JF - Journal of Neurochemistry N2 - Behavioral flexibility is an important cornerstone for the ecological success of animals. Social Cataglyphis nodus ants with their age‐related polyethism characterized by age‐related behavioral phenotypes represent a prime example for behavioral flexibility. We propose neuropeptides as powerful candidates for the flexible modulation of age‐related behavioral transitions in individual ants. As the neuropeptidome of C. nodus was unknown, we collected a comprehensive peptidomic data set obtained by transcriptome analysis of the ants’ central nervous system combined with brain extract analysis by Q‐Exactive Orbitrap mass spectrometry (MS) and direct tissue profiling of different regions of the brain by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) MS. In total, we identified 71 peptides with likely bioactive function, encoded on 49 neuropeptide‐, neuropeptide‐like, and protein hormone prepropeptide genes, including a novel neuropeptide‐like gene (fliktin). We next characterized the spatial distribution of a subset of peptides encoded on 16 precursor proteins with high resolution by MALDI MS imaging (MALDI MSI) on 14 µm brain sections. The accuracy of our MSI data were confirmed by matching the immunostaining patterns for tachykinins with MSI ion images from consecutive brain sections. Our data provide a solid framework for future research into spatially resolved qualitative and quantitative peptidomic changes associated with stage‐specific behavioral transitions and the functional role of neuropeptides in Cataglyphis ants. KW - brain KW - MALDI imaging KW - neuropeptides KW - neuropeptidomics KW - social insect KW - transcriptomics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239917 VL - 158 IS - 2 SP - 391 EP - 412 ER - TY - JOUR A1 - Rössler, Wolfgang A1 - Grob, Robin A1 - Fleischmann, Pauline N. T1 - The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain JF - Journal of Comparative Physiology A N2 - Efficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth’s magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks. KW - central complex KW - mushroom body KW - multisensory navigation KW - visual memory KW - neuronal and synaptic plasticity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325096 VL - 209 IS - 4 ER - TY - JOUR A1 - Grob, Robin A1 - Fleischmann, Pauline N. A1 - Grübel, Kornelia A1 - Wehner, Rüdiger A1 - Rössler, Wolfgang T1 - The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies JF - Frontiers in Behavioral Neuroscience N2 - Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system. KW - sky-compass pathway KW - visual orientation KW - look-back behavior KW - desert ants KW - vector navigation KW - memory KW - central complex KW - mushroom body Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159235 VL - 11 IS - 226 ER - TY - JOUR A1 - Habenstein, Jens A1 - Amini, Emad A1 - Grübel, Kornelia A1 - el Jundi, Basil A1 - Rössler, Wolfgang T1 - The brain of Cataglyphis ants: Neuronal organization and visual projections JF - Journal of Comparative Neurology N2 - Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far‐reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision‐based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three‐dimensional neuronal map of synapse‐rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function. KW - 3D reconstruction KW - ant brain KW - antennal lobes KW - central complex KW - insect KW - mushroom bodies KW - optical tracts Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218212 VL - 528 IS - 18 SP - 3479 EP - 3506 ER - TY - JOUR A1 - Grob, Robin A1 - Heinig, Niklas A1 - Grübel, Kornelia A1 - Rössler, Wolfgang A1 - Fleischmann, Pauline N. T1 - Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants JF - Journal of Comparative Neurology N2 - Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation. KW - antennal lobe KW - synaptic plasticity KW - polymorphism KW - optic lobes KW - mushroom bodies KW - learning and memory KW - central complex Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257299 VL - 529 IS - 18 ER - TY - JOUR A1 - Albert, Štefan A1 - Spaethe, Johannes A1 - Grübel, Kornelia A1 - Rössler, Wolfgang T1 - Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees N2 - Royal jelly proteins (MRJPs) of the honeybee bear several open questions. One of them is their expression in tissues other than the hypopharyngeal glands (HGs), the site of royal jelly production. The sole MRJP-like gene of the bumblebee, Bombus terrestris (BtRJPL), represents a pre-diversification stage of the MRJP gene evolution in bees. Here we investigate the expression of BtRJPL in the HGs and the brain of bumblebees. Comparison of the HGs of bumblebees and honeybees revealed striking differences in their morphology with respect to sex- and caste-specific appearance, number of cells per acinus, and filamentous actin (F-actin) rings. At the cellular level, we found a temporary F-actin-covered meshwork in the secretory cells, which suggests a role for actin in the biogenesis of the end apparatus in HGs. Using immunohistochemical localization, we show that BtRJPL is expressed in the bumblebee brain, predominantly in the Kenyon cells of the mushroom bodies, the site of sensory integration in insects, and in the optic lobes. Our data suggest that a dual glandbrain function preceded the multiplication of MRJPs in the honeybee lineage. In the course of the honeybee evolution, HGs dramatically changed their morphology in order to serve a food-producing function. KW - Hypopharyngeal glands KW - Bumblebee KW - Bombus KW - Brain KW - Labial glands KW - Immunohistochemistry KW - Kenyon cells KW - Mushroom bodies KW - Honeybee Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112733 ER - TY - JOUR A1 - Anton, Sylvia A1 - Rössler, Wolfgang T1 - Plasticity and modulation of olfactory circuits in insects JF - Cell and Tissue Research N2 - Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed. KW - antenna KW - antennal lobe KW - mushroom body KW - neuromodulation KW - structural synaptic plasticity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235820 SN - 0302-766X VL - 383 ER - TY - JOUR A1 - Rössler, Wolfgang A1 - Spaethe, Johannes A1 - Groh, Claudia T1 - Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016) JF - Scientific Reports N2 - A recent study by Peng and Yang in Scientific Reports using confocal-microscopy based automated quantification of anti-synapsin labeled microglomeruli in the mushroom bodies of honeybee brains reports potentially incorrect numbers of microglomerular densities. Whereas several previous studies using visually supervised or automated counts from confocal images and analyses of serial 3D electron-microscopy data reported consistent numbers of synaptic complexes per volume, Peng and Yang revealed extremely low numbers differing by a factor of 18 or more from those obtained in visually supervised counts, and by a factor 22–180 from numbers in two other studies using automated counts. This extreme discrepancy is especially disturbing as close comparison of raw confocal images of anti-synapsin labeled whole-mount brain preparations are highly similar across these studies. We conclude that these discrepancies may reside in potential misapplication of confocal imaging followed by erroneous use of automated image analysis software. Consequently, the reported microglomerular densities during maturation and after manipulation by insecticides require validation by application of appropriate confocal imaging methods and analyses tools that rely on skilled observers. We suggest several improvements towards more reliable or standardized automated or semi-automated synapse counts in whole mount preparations of insect brains. KW - confocal-microscopy based automated quantification KW - mushroom bodies KW - honeybees KW - brain Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170451 VL - 7 IS - 9786 ER - TY - JOUR A1 - Rössler, Wolfgang A1 - Brill, Martin F. T1 - Parallel processing in the honeybee olfactory pathway: structure, function, and evolution JF - Journal of Comparative Physiology A N2 - Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to “what-” and “where” subsystems in visual pathways, this suggests two parallel olfactory subsystems providing “what-” (quality) and “when” (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect. KW - multi-unit recording KW - antennal lobe KW - glomeruli KW - projection neurons KW - mushroom bodies Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132548 VL - 199 ER - TY - JOUR A1 - Hurd, Paul J. A1 - Grübel, Kornelia A1 - Wojciechowski, Marek A1 - Maleszka, Ryszard A1 - Rössler, Wolfgang T1 - Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining JF - Scientific Reports N2 - In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain. KW - mushroom body calyx KW - synaptic complexes KW - bodies KW - insect KW - plasticity KW - insights KW - genome KW - model KW - proteins KW - methylation KW - biological techniques KW - cell biology KW - developmental biology KW - molecular biology KW - neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260059 VL - 11 ER -