TY - JOUR A1 - Yu, Sung-Huan A1 - Vogel, Jörg A1 - Förstner, Konrad U. T1 - ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes JF - GigaScience N2 - To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/. KW - genome annotation KW - RNA-seq KW - transcriptomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178942 VL - 7 ER - TY - JOUR A1 - Westermann, Alexander J. A1 - Venturini, Elisa A1 - Sellin, Mikael E. A1 - Förstner, Konrad U. A1 - Hardt, Wolf-Dietrich A1 - Vogel, Jörg T1 - The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium JF - mBio N2 - FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked “third domain” of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria. KW - Hfq KW - noncoding RNA KW - ProQ KW - RNA-seq KW - bacterial pathogen KW - posttranscriptional control Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177722 VL - 10 IS - 1 ER - TY - JOUR A1 - Westermann, Alexander J. A1 - Barquist, Lars A1 - Vogel, Jörg T1 - Resolving host-pathogen interactions by dual RNA-seq JF - PLoS Pathogens N2 - The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables “dual RNA-seq” studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique. KW - Medicine KW - RNA sequencing KW - Salmonellosis KW - Transcriptome analysis KW - Gene expression KW - Bacterial pathogens KW - Salmonella KW - Host cells KW - Lysis (medicine) Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171921 VL - 13 IS - 2 ER - TY - JOUR A1 - Vogel, Jörg T1 - An RNA biology perspective on species‐specific programmable RNA antibiotics JF - Molecular Microbiology N2 - Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad‐spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic‐resistant pathogens as an alternative to standard antibiotics. There is already proof‐of‐principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off‐targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one‐fits‐all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications. KW - antibiotic KW - microbiome KW - RNA-seq KW - small RNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214869 VL - 113 IS - 3 SP - 550 EP - 559 ER - TY - JOUR A1 - Tawk, Caroline A1 - Sharan, Malvika A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins JF - Scientific Reports N2 - Many pathogenic bacteria utilize specialized secretion systems to deliver proteins called effectors into eukaryotic cells for manipulation of host pathways. The vast majority of known effector targets are host proteins, whereas a potential targeting of host nucleic acids remains little explored. There is only one family of effectors known to target DNA directly, and effectors binding host RNA are unknown. Here, we take a two-pronged approach to search for RNA-binding effectors, combining biocomputational prediction of RNA-binding domains (RBDs) in a newly assembled comprehensive dataset of bacterial secreted proteins, and experimental screening for RNA binding in mammalian cells. Only a small subset of effectors were predicted to carry an RBD, indicating that if RNA targeting was common, it would likely involve new types of RBDs. Our experimental evaluation of effectors with predicted RBDs further argues for a general paucity of RNA binding activities amongst bacterial effectors. We obtained evidence that PipB2 and Lpg2844, effector proteins of Salmonella and Legionella species, respectively, may harbor novel biochemical activities. Our study presenting the first systematic evaluation of the RNA-targeting potential of bacterial effectors offers a basis for discussion of whether or not host RNA is a prominent target of secreted bacterial proteins. KW - pathogens KW - bacterial secretion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158815 VL - 7 ER - TY - JOUR A1 - Sharan, Malvika A1 - Förstner, Konrad U. A1 - Eulalio, Ana A1 - Vogel, Jörg T1 - APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins JF - Nucleic Acids Research N2 - RNA-binding proteins (RBPs) have been established as core components of several post-transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs) and their regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical challenges associated with the existing global screening approaches. We introduce APRICOT, a computational pipeline for the sequence-based identification and characterization of proteins using RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences using position-specific scoring matrices and Hidden Markov Models of the functional domains and statistically scores them based on a series of sequence-based features. Subsequently, APRICOT identifies putative RBPs and characterizes them by several biological properties. Here we demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets compared to other existing tools for the sequence-based prediction of RBPs by achieving an average sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation are available at https://pypi.python.org/pypi/bio-apricot. KW - RNA-binding proteins KW - identification KW - characterization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157963 VL - 45 IS - 11 ER - TY - JOUR A1 - Schulte, Leon N. A1 - Westermann, Alexander J. A1 - Vogel, Jörg T1 - Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing JF - Nucleic Acids Research N2 - Many microRNAs (miRNAs) are co-regulated during the same physiological process but the underlying cellular logic is often little understood. The conserved, immunomodulatory miRNAs miR-146 and miR-155, for instance, are co-induced in many cell types in response to microbial lipopolysaccharide (LPS) to feedback-repress LPS signalling through Toll-like receptor TLR4. Here, we report that these seemingly co-induced regulatory RNAs dramatically differ in their induction behaviour under various stimuli strengths and act non-redundantly through functional specialization; although miR-146 expression saturates at sub-inflammatory doses of LPS that do not trigger the messengers of inflammation markers, miR-155 remains tightly associated with the pro-inflammatory transcriptional programmes. Consequently, we found that both miRNAs control distinct mRNA target profiles; although miR-146 targets the messengers of LPS signal transduction components and thus downregulates cellular LPS sensitivity, miR-155 targets the mRNAs of genes pervasively involved in pro-inflammatory transcriptional programmes. Thus, miR-155 acts as a broad limiter of pro-inflammatory gene expression once the miR-146 dependent barrier to LPS triggered inflammation has been breached. Importantly, we also report alternative miR-155 activation by the sensing of bacterial peptidoglycan through cytoplasmic NOD-like receptor, NOD2. We predict that dosedependent responses to environmental stimuli may involve functional specialization of seemingly coinduced miRNAs in other cellular circuitries as well. KW - Molekulare Infektionsbiologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129765 VL - 41 IS - 1 ER - TY - JOUR A1 - Schulte, Leon N. A1 - Westermann, Alexander J. A1 - Vogel, Jörg T1 - Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing N2 - Many microRNAs (miRNAs) are co-regulated during the same physiological process but the underlying cellular logic is often little understood. The conserved, immunomodulatory miRNAs miR-146 and miR-155, for instance, are co-induced in many cell types in response to microbial lipopolysaccharide (LPS) to feedback-repress LPS signalling through Toll-like receptor TLR4. Here, we report that these seemingly co-induced regulatory RNAs dramatically differ in their induction behaviour under various stimuli strengths and act non-redundantly through functional specialization; although miR-146 expression saturates at sub-inflammatory doses of LPS that do not trigger the messengers of inflammation markers, miR-155 remains tightly associated with the pro-inflammatory transcriptional programmes. Consequently, we found that both miRNAs control distinct mRNA target profiles; although miR-146 targets the messengers of LPS signal transduction components and thus downregulates cellular LPS sensitivity, miR-155 targets the mRNAs of genes pervasively involved in pro-inflammatory transcriptional programmes. Thus, miR-155 acts as a broad limiter of pro-inflammatory gene expression once the miR-146 dependent barrier to LPS triggered inflammation has been breached. Importantly, we also report alternative miR-155 activation by the sensing of bacterial peptidoglycan through cytoplasmic NOD-like receptor, NOD2. We predict that dosedependent responses to environmental stimuli may involve functional specialization of seemingly coinduced miRNAs in other cellular circuitries as well. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76365 ET - Advance Access ER - TY - JOUR A1 - Schulte, Leon N. A1 - Schweinlin, Matthias A1 - Westermann, Alexander J. A1 - Janga, Harshavardhan A1 - Santos, Sara C. A1 - Appenzeller, Silke A1 - Walles, Heike A1 - Vogel, Jörg A1 - Metzger, Marco T1 - An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection JF - mBio N2 - A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens. IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host. KW - Salmonella KW - gene expression KW - infectious disease Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229428 VL - 11, 2020 IS - 1 ER - TY - JOUR A1 - Schmidtke, Cornelius A1 - Findeiß, Sven A1 - Sharma, Cynthia M. A1 - Kuhfuss, Juliane A1 - Hoffmann, Steve A1 - Vogel, Jörg A1 - Stadler, Peter F. A1 - Bonas, Ulla T1 - Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions JF - Nucleic Acids Research N2 - The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14% of all mRNAs are leaderless and 13% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs. KW - SUBSP carotovora KW - regulatory RNA KW - gene-cluster KW - campestris PV vesicatoria KW - escherichia coli KW - determines pathgenicity KW - hypersensitive response KW - ralstonia solanacearum KW - extracellular enzymes KW - secretion systems KW - transcription initiation site KW - RNA sequence analyses KW - messanger RNA KW - plants KW - libraries KW - genome KW - genes KW - gene expression profiling KW - genetic transcription KW - northern blotting KW - untranslated regions KW - xanthomonas KW - xanthomonas campestris KW - bacteria KW - virulence KW - pathogenetic organism KW - RNA KW - small RNA KW - pathogenicity KW - type III secretion system pathways KW - maps KW - consesus KW - host (organism) KW - type III protein secretion system complex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131781 VL - 40 IS - 5 SP - 2020 EP - 2031 ER -