TY - JOUR A1 - Castilho, Miguel A1 - Hochleitner, Gernot A1 - Wilson, Wouter A1 - van Rietbergen, Bert A1 - Dalton, Paul D. A1 - Groll, Jürgen A1 - Malda, Jos A1 - Ito, Keita T1 - Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds JF - Scientific Reports N2 - Reinforcing hydrogels with micro-fibre scaffolds obtained by a Melt-Electrospinning Writing (MEW) process has demonstrated great promise for developing tissue engineered (TE) constructs with mechanical properties compatible to native tissues. However, the mechanical performance and reinforcement mechanism of the micro-fibre reinforced hydrogels is not yet fully understood. In this study, FE models, implementing material properties measured experimentally, were used to explore the reinforcement mechanism of fibre-hydrogel composites. First, a continuum FE model based on idealized scaffold geometry was used to capture reinforcement effects related to the suppression of lateral gel expansion by the scaffold, while a second micro-FE model based on micro-CT images of the real construct geometry during compaction captured the effects of load transfer through the scaffold interconnections. Results demonstrate that the reinforcement mechanism at higher scaffold volume fractions was dominated by the load carrying-ability of the fibre scaffold interconnections, which was much higher than expected based on testing scaffolds alone because the hydrogel provides resistance against buckling of the scaffold. We propose that the theoretical understanding presented in this work will assist the design of more effective composite constructs with potential applications in a wide range of TE conditions. KW - biomedical engineering KW - biomedical materials KW - gels and hydrogels Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222280 VL - 8 ER - TY - JOUR A1 - Weis, Matthias A1 - Shan, Junwen A1 - Kuhlmann, Matthias A1 - Jungst, Tomasz A1 - Tessmar, Jörg A1 - Groll, Jürgen T1 - Evaluation of hydrogels based on oxidized hyaluronic acid for bioprinting JF - Gels N2 - In this study, we evaluate hydrogels based on oxidized hyaluronic acid, cross-linked with adipic acid dihydrazide, for their suitability as bioinks for 3D bioprinting. Aldehyde containing hyaluronic acid (AHA) is synthesized and cross-linked via Schiff Base chemistry with bifunctional adipic acid dihydrazide (ADH) to form a mechanically stable hydrogel with good printability. Mechanical and rheological properties of the printed and casted hydrogels are tunable depending on the concentrations of AHA and ADH cross-linkers. KW - biofabrication KW - bioprinting KW - hyaluronic acid Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197600 SN - 2310-2861 VL - 4 IS - 4 ER -