TY - THES A1 - Schreiber, Benjamin T1 - Selective and enhanced fluorescence by biocompatible nanocoatings to monitor G-protein-coupled receptor dynamics T1 - Selektive und verstärkte Fluoreszenz durch biokompatible Nanobeschichtungen zur Untersuchung von G-protein-gekoppelten Rezeptoren und ihrer Dynamik N2 - Fluorescence microscopy has become one of the most important techniques for the imaging of biological cells and tissue, since the technique allows for selective labeling with fluorescent molecules and is highly suitable for low-light applications down to the single molecule regime. The methodological requirements are well-defined for studying membrane receptors within a highly localized nanometer-thin membrane. For example, G-protein-coupled receptors (GPCRs) are an extensively studied class of membrane receptors that represent one of the most important pharmaceutical targets. Ligand binding and GPCR activation dynamics are suspected to take place at the millisecond scale and may even be far faster. Thus, techniques that are fast, selective, and live-cell compatible are required to monitor GPCR dynamics. Fluorescence resonance energy transfer (FRET) and total internal reflection fluorescence microscopy (TIRF-M) are methods of choice to monitor the dynamics of GPCRs selectively within the cell membrane. Despite the remarkable success of these modalities, there are limitations. Most importantly, inhomogeneous illumination can induce imaging artifacts, rendering spectroscopic evaluation difficult. Background signal due to scattering processes or imperfect labeling can hamper the signal-to-noise, thus limiting image contrast and acquisition speed. Careful consideration of the internal physiology is required for FRET sensor design, so that ligand binding and cell compatibility are well-preserved despite the fluorescence labeling procedures. This limitation of labeling positions leads to very low signal changes in FRET-based GPCR analysis. In addition, microscopy of these systems becomes even more challenging in single molecule or low-light applications where the accuracy and temporal resolution may become dramatically low. Fluorescent labels should therefore be brighter, protected from photobleaching, and as small as possible to avoid interference with the binding kinetics. The development of new fluorescent molecules and labeling methods is an ongoing process. However, a complete characterization of new labels and sensors takes time. So far, the perfect dye system for GPCR studies has not been found, even though there is high demand. Thus, this thesis explores and applies a different approach based on improved illumination schemes for TIRF-M as well as metal-coated coverslips to enhance fluorescence and FRET efficiency. First, it is demonstrated that a 360° illumination scheme reduces typical TIRF artifacts and produces a much more homogenously illuminated field of view. Second, membrane imaging and FRET spectroscopy are improved by metal coatings that are used to modulate the fluorescent properties of common fluorescent dyes. Computer simulation methods are used to understand the underlying photophysics and to design the coatings. Third, this thesis explores the operational regime and limitations of plasmonic approaches with high sectioning capabilities. The findings are summarized by three publications that are presented in the results section of this work. In addition, the theory of fluorescence and FRET is explained, with particular attention to its emission modulations in the vicinity of metal-dielectric layers. Details of the instrumentation, computer simulations, and cell culture are described in the method section. The work concludes with a discussion of the findings within the framework of recent technological developments as well as perspectives and suggestions for future approaches complete the presented work. N2 - Die Fluoreszenzmikroskopie ist zu einer der wichtigsten Techniken für die Bildgebung biologischer Zellen und Gewebe geworden, da die Technik eine selektive Markierung mit fluoreszierenden Molekülen ermöglicht und sich hervorragend für Anwendungen bei schwachem Licht bis hin zum Einzelmolekül-Regime eignet. Die methodischen Anforderungen sind gut definiert, um Membranrezeptoren innerhalb einer stark lokalisierten nanometerdünnen Membran zu untersuchen. Zum Beispiel sind G-Protein-gekoppelte Rezeptoren (GPCRs) eine ausführlich untersuchte Klasse von Membranrezeptoren, weil diese wichtige pharmazeutische Ziele darstellen. Es wird vermutet, dass die Ligandenbindungs- und GPCR-Aktivierungsdynamiken im Millisekundenbereich stattfinden und sogar viel schneller sein können. Daher sind Techniken erforderlich, die schnell, selektiv und lebend-Zell kompatibel sind, um die GPCR-Dynamik zu aufzunehmen. Fluoreszenzresonanzenergietransfer (FRET) und internale Totalreflexions-Fluoreszenzmikroskopie (TIRF-M) sind Methoden der Wahl, um die Dynamik von GPCRs selektiv innerhalb der Zellmembran zu untersuchen. Trotz des bemerkenswerten Erfolgs dieser Modalitäten gibt es Einschränkungen. Am wichtigsten ist, dass eine inhomogene Beleuchtung Artefakte erzeugen kann, welche die spektroskopische Auswertung erschweren. Hintergrundsignale aufgrund von Streuprozessen oder unvollständiger Markierung können das Signal-Rausch-Verhältnis beeinträchtigen und somit den Bildkontrast und die Erfassungsgeschwindigkeit begrenzen. Eine sorgfältige Berücksichtigung der internen Physiologie ist für das Design der FRET-Sensoren ist erforderlich, so dass die Ligandenbindung und die Zellkompatibilität trotz der Fluoreszenzmarkierungsverfahren nicht gestört werden. Diese Einschränkung der Markierungspositionen führt zu sehr geringen Signalkontrast in der FRET-basierten GPCR-Analyse. Darüber hinaus wird die Mikroskopie dieser Systeme bei Einzelmolekül- oder Schwachlichtanwendungen, bei denen die Genauigkeit und die zeitliche Auflösung dramatisch niedrig werden können, noch schwieriger. Fluoreszierende Marker sollten daher heller, vor Photobleichung geschützt und so klein wie möglich sein, um Störungen mit der Rezeptorkinetik zu vermeiden. Die Entwicklung neuer fluoreszierender Moleküle und Markierungsmethoden ist ein fortlaufender Prozess. Eine vollständige Charakterisierung neuer Marker und Sensoren benötigt jedoch Zeit. Bis jetzt wurde das perfekte Farbstoffsystem für GPCR-Studien noch nicht gefunden, auch wenn es eine hohe Nachfrage dafür gibt. Daher wird ein anderer Ansatz auf der Grundlage verbesserter Beleuchtungsschemata für TIRF-M sowie metallbeschichtete Deckgläser zur Verbesserung der Fluoreszenz- und FRET-Effizienz untersucht. Zunächst wird gezeigt, dass ein 360 ° Beleuchtung typische TIRF-Artefakte reduziert und ein wesentlich homogeneres Bildausleuchtung erzeugt. Zweitens wurde durch die Modulation der Fluoreszenzeigenschaften gängiger Fluoreszenzfarbstoffe die Membranbildgebung und FRET-Spektroskopie verbessert. Computersimulationsmethoden werden verwendet, um die zugrundeliegende Photophysik zu verstehen und zielgerichtet Beschichtungen zu entwerfen. Drittens wurden das operationelle Regime und die Grenzen von plasmonischen Ansätzen mit noch höheren Signalselektiverung untersucht. Die Ergebnisse sind in drei Publikationen zusammengefasst, die im Ergebnisteil dieser Arbeit vorgestellt werden. Darüber hinaus wird die Theorie der Fluoreszenz und des FRET unter besonderer Berücksichtigung ihrer Emissionsmodulationen in der Nähe von Metall-Dielektrikum-Schichten erläutert. Details der Instrumentierung, Computersimulationen und Zellkultur werden im Abschnitt Methoden beschrieben. Die Arbeit schließt mit einer Diskussion der Ergebnisse im Rahmen der jüngsten technologischen Entwicklungen sowie mit Perspektiven und Vorschlägen für zukünftige Ansätze, die die vorliegende Arbeit abrunden. KW - G-Protein gekoppelte Rezeptoren KW - Fluorescence KW - Microscopy KW - Plasmonic KW - Fluorescence Resonance Energy Transfer KW - G Protein-Coupled Receptors KW - Fluoreszenzmikroskopie KW - Fluorescence Microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173923 ER - TY - THES A1 - Glogger, Marius T1 - Single-molecule fluorescence microscopy in live \(Trypanosoma\) \(brucei\) and model membranes T1 - Einzelmolekül-Fluoreszenzmikroskopie in lebenden \(Trypanosoma\) \(brucei\) und Modellmembranen N2 - Der eukaryotische Parasit Trypanosoma brucei hat komplexe Strategien entwickelt um der Immunantwort eines Wirtes zu entkommen und eine persistente Infektion innerhalb dessen aufrechtzuerhalten. Ein zentrales Element seiner Verteidigungsstrategie stützt sich auf die Schutzfunktion seines Proteinmantels auf der Zelloberfläche. Dieser Mantel besteht aus einer dichten Schicht aus identischen, Glykosylphosphatidylinositol (GPI)-verankerten variablen Oberflächenglykoproteinen (VSG). Der VSG Mantel verhindert die Erkennung der darunterliegenden, invarianten Epitope durch das Immunsystem. Obwohl es notwendig ist die Funktionsweise des VSG Mantels zu verstehen, vor allem um ihn als mögliches Angriffsziel gegen den Parasiten zu verwenden, sind seine biophysikalischen Eigenschaften bisher nur unzureichend verstanden. Dies ist vor allem der Tatsache geschuldet, dass die hohe Motilität der Parasiten mikroskopische Studien in lebenden Zellen bisher weitestgehend verhinderten. In der vorliegenden Arbeit wird nun hochmoderne Einzelmolekül-Fluoreszenzmikroskopie (EMFM) als Möglichkeit für mikroskopische Untersuchungen im Forschungsbereich der Trypanosomen vorgestellt. Die Arbeit umfasst Untersuchungen der VSG Dynamik unter definierten Bedingungen künstlicher Membransysteme. Es wurde zuerst der Einfluss der lateralen Proteindichte auf die VSG Diffusion untersucht. Experimente mittels Fluoreszenz- Wiederkehr nach irreversiblem Photobleichen und komplementäre Einzelmolekül- Verfolgungs Experimente offenbarten, dass ein molekularer Diffusionsschwellenwert existiert. Über diesem Schwellenwert wurde eine dichteabhänige Reduzierung des Diffusionskoeffizienten gemessen. Eine relative Quantifizierung der rekonstituierten VSGs verdeutlichte, dass der Oberflächenmantel der Trypanosomen sehr nahe an diesem Schwellenwert agiert. Der VSG Mantel ist optimiert um eine hohe Proteindichte bei gleichzeitiger hoher Mobilität der VSGs zu gewährleisten. Des Weiteren wurde der Einfluss der VSG N-Glykosylierung auf die Diffusion des Proteins quantitativ untersucht. Die Messungen ergaben, dass die N-Glykosylierung dazu beiträgt eine hohe Mobilität bei hohen Proteindichten aufrechtzuerhalten. Eine detaillierte Analyse von VSG Trajektorien offenbarte, dass zwei unterschiedliche Populationen frei diffundierender VSGs in der künstlichen Membran vorlagen. Kürzlich wurde entdeckt, dass VSGs zwei strukturell unterschiedliche Konformationen annehmen können. Die Messungen in der Arbeit stimmen mit diesen Beschreibungen überein. Die Ergebnisse der EMFM in künstlichen Membranen wurden durch VSG Einzelmolekül- Verfolgungs Experimente auf lebenden Zellen ergänzt. Es wurde eine hohe Mobilität und Dynamik einzelner VSGs gemessen, was die allgemein dynamische Natur des VSG Mantels verdeutlicht. Dies führte zu der Schlussfolgerung, dass der VSG Mantel auf lebenden Trypanosomen ein dichter und dennoch dynamischer Schutzmantel ist. Die Fähigkeit der VSGs ihre Konformation flexibel anzupassen, unterstützt das Erhalten der Fluidität bei variablen Dichten. Diese Eigenschaften des VSG Mantels sind elementar für die Aufrechterhaltung einer presistenden Infektion eines Wirtes. In dieser Arbeit werden des Weiteren verschiedene, auf Hydrogel basierende Einbettungsmethoden vorgestellt. Diese ermöglichten die Zellimmobilisierung und erlaubten EMFM in lebenden Trypanosomen. Die Hydrogele wiesen eine hohe Zytokompatibilität auf. Die Zellen überlebten in den Gelen für eine Stunde nach Beginn der Immobilisierung. Die Hydrogele erfüllten die Anforderungen der Superresolution Mikroskopie (SRM) da sie eine geringe Autofluoreszenz im Spektralbereich der verwendeten Fluorophore besaßen. Mittels SRM konnte nachgewiesen werden, dass die Hydrogele die Zellen effizient immobilisierten. Als erstes Anwendungsbeispiel der Methode wurde die Organisation der Plasmamembran in lebenden Trypanosomen untersucht. Die Untersuchung eines fluoreszenten Tracers in der inneren Membranschicht ergab, dass dessen Verteilung nicht homogen war. Es wurden spezifische Membrandomänen gefunden, in denen das Molekül entweder vermehrt oder vermindert auftrat. Dies führte zu der Schlussfolgerung, dass diese Verteilung durch eine Interaktion des Tracers mit Proteinen des zellulären Zytoskeletts zustande kam. Die in dieser Arbeit präsentierten Ergebnisse zeigen, dass EMFM erfolgreich für verschiedene biologische Untersuchungen im Forschungsfeld der Trypanosomen angewendet werden kann. Dies gilt zum Beispiel für die Untersuchung von der VSG Dynamik in künstlichen Membransystemen, aber auch für Studien in lebenden Zellen unter Verwendung der auf Hydrogelen basierenden Zelleinbettung. N2 - The eukaryotic parasite Trypanosoma brucei has evolved sophisticated strategies to escape the host immune response and maintain a persistent infection inside a host. One central feature of the parasite’s defense mechanism relies on the shielding function of their surface protein coat. This coat is composed of a dense arrangement of one type of glycosylphosphatidylinositol (GPI)-anchored variant surface glycoproteins (VSGs) which impair the identification of epitopes of invariant surface proteins by the immune system. In addition to the importance of understanding the function of the VSG coat and use it as a potential target to efficiently fight the parasite, it is also crucial to study its biophysical properties as it is not yet understood sufficiently. This is due to the fact that microscopic investigations on living trypanosomes are limited to a great extent by the intrinsic motility of the parasite. In the present study, state-of-the-art single-molecule fluorescence microscopy (SMFM) is introduced as a tool for biophysical investigations in the field of trypanosome research. The work encompasses studies of VSG dynamics under the defined conditions of an artificial supported lipid bilayer (SLB). First, the impact of the lateral protein density on VSG diffusion was systematically studied in SLBs. Ensemble fluorescence after photobleaching (FRAP) and complementary single-particle tracking experiments revealed that a molecular crowding threshold (MCT) exists, above which a density dependent decrease of the diffusion coefficient is measured. A relative quantification of reconstituted VSGs illustrated that the VSG coat of living trypanosomes operates very close to its MCT and is optimized for high density while maintaining fluidity. Second, the impact of VSG N-glycosylation on VSG diffusion was quantitatively investigated. N-glycosylation was shown to contribute to preserving protein mobility at high protein concentrations. Third, a detailed analysis of VSG trajectories revealed that two distinct populations of freely diffusing VSGs were present in a SLB, which is in agreement with the recent finding, that VSGs are able to adopt two main structurally distinct conformations. The results from SLBs were further complemented by single-particle tracking experiments of surface VSGs on living trypanosomes. A high mobility and free diffusion were measured on the cell surface, illustrating the overall dynamic nature of the VSG coat. It was concluded that the VSG coat on living trypanosomes is a protective structure that combines density and mobility, which is supported by the conformational flexibility of VSGs. These features are elementary for the persistence of a stable infection in the host. Different hydrogel embedding methods are presented, that facilitated SMFM in immobilized, living trypanosomes. The hydrogels were found to be highly cytocompatible for one hour after cross-linking. They exhibited low autofluorescence properties in the spectral range of the investigations, making them suitable for super-resolution microscopy (SRM). Exemplary SRM on living trypanosomes illustrated that the hydrogels efficiently immobilized the cells on the nanometer lever. Furthermore, the plasma membrane organization was studied in living trypanosomes. A statistical analysis of a tracer molecule inside the inner leaflet of the plasma membrane revealed that specific membrane domains exist, in which the tracer appeared accumulated or diluted. It was suggested that this distribution was caused by the interaction with proteins of the underlying cytoskeleton. In conclusion, SMFM has been successfully introduced as a tool in the field of trypanosome research. Measurements in model membranes facilitated systematic studies of VSG dynamics on the single-molecule level. The implementation of hydrogel immobilization allowed for the study of static structures and dynamic processes with high spatial and temporal resolution in living, embedded trypanosomes for the first time. KW - Single-molecule fluorescence microscopy KW - Trypanosoma brucei KW - Variant surface glycoprotein KW - Trypanosoma brucei KW - Virulenzfaktor KW - Zelloberfläche KW - Glykoproteine KW - Fluoreszenzmikroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169222 ER - TY - THES A1 - Bartossek, Thomas T1 - Structural and functional analysis of the trypanosomal variant surface glycoprotein using x-ray scattering techniques and fluorescence microscopy T1 - Strukturelle und funktionale Analyse des variablen Oberflächenproteins von Trypanosoma brucei mithilfe vön Röntgenstreutechniken und Fluoreszenzmikroskopie N2 - Trypanosoma brucei is an obligate parasite and causative agent of severe diseases affecting humans and livestock. The protist lives extracellularly in the bloodstream of the mammalian host, where it is prone to attacks by the host immune system. As a sophisticated means of defence against the immune response, the parasite’s surface is coated in a dense layer of the variant surface glycoprotein (VSG), that reduces identification of invariant epitopes on the cell surface by the immune system to levels that prevent host immunity. The VSG has to form a coat that is both dense and mobile, to shield invariant surface proteins from detection and to allow quick recycling of the protective coat during immune evasion. This coat effectively protects the parasite from the harsh environment that is the mammalian bloodstream and leads to a persistent parasitemia if the infection remains untreated. The available treatment against African Trypanosomiasis involves the use of drugs that are themselves severely toxic and that can lead to the death of the patient. Most of the drugs used as treatment were developed in the early-to-mid 20th century, and while developments continue, they still represent the best medical means to fight the parasite. The discovery of a fluorescent VSG gave rise to speculations about a potential interaction between the VSG coat and components of the surrounding medium, that could also lead to a new approach in the treatment of African Trypanosomiasis that involves the VSG coat. The initially observed fluorescence signal was specific for a combination of a VSG called VSG’Y’ and the triphenylmethane (TPM) dye phenol red. Exchanging this TPM to a bromo-derivative led to the observation of another fluorescence effect termed trypanicidal effect which killed the parasite independent of the expressed VSG and suggests a structurally conserved feature between VSGs that could function as a specific drug target against T. b. brucei. The work of this thesis aims to identify the mechanisms that govern the unique VSG’Y’ fluorescence and the trypanocidal effect. Fluorescence experiments and protein mutagenesis of VSG’Y’ as well as crystallographic trials with a range of different VSGs were utilized in the endeavour to identify the binding mechanisms between TPM compounds and VSGs, to find potentially conserved structural features between VSGs and to identify the working mechanisms of VSG fluorescence and the trypanocidal effect. These trials have the potential to lead to the formulation of highly specific drugs that target the parasites VSG coat. During the crystallographic trials of this thesis, the complete structure of a VSG was solved experimentally for the first time. This complete structure is a key component in furthering the understanding of the mechanisms governing VSG coat formation. X-ray scattering techniques, involving x-ray crystallography and small angle x-ray scattering were applied to elucidate the first complete VSG structures, which reveal high flexibility of the protein and supplies insight into the importance of this flexibility in the formation of a densely packed but highly mobile surface coat. N2 - Trypanosoma brucei ist ein eukaryotischer Parasit welcher bei Menschen und Nutztieren schwere Krankheiten auslöst. Der Protist lebt extrazellulär im Blutstrom seines Säugetier-Wirtes, in welchem er unter konstantem Angriff durch das Wirts-Immunsystem steht. Als ausgeklügelte Methode zur Umgehung der Immunantwort besitzt der Parasit einen dichten Oberflächenmantel des variablen Oberflächen-Glycoproteins (VSG), welcher die Identifikation invariabler Oberflächenproteine durch das Immunsystem erschwert und Wirts-Immunität gegen den Parasiten verhindert. Der gebildete VSG-Mantel muss gleichzeitig eine hohe Dichte besitzt, um invariable Oberflächenproteine vor Immundetektion zu beschützen, und eine hohe Mobilität aufweisen, um ein schnelles Recycling des Schutzmantels während Immunantworten zu gewährleisten. Dieser Mantel schützt den Parasiten effektiv vor dem Wirts-Immunsystem und führt bei fehlender Behandlung des Patienten zur persistenten Parasitemie durch Trypanosoma brucei. Die verfügbaren Behandlung gegen die Afrikanische Trypanosomiasis beinhaltet die Benutzung von Medikamenten welche ihrerseits z.T. stark toxisch sind und den Tod des Patienten verursachen können. Ein Großteil der verfügbaren Medikamente wurden zu Beginn des letzten Jahrhunderts entwickelt und stellen trotz anhaltenden Entwicklungen noch immer die beste Lösung im Kampf gegen den Parasiten dar. Die Entdeckung eines fluoreszierenden VSGs deutete auf eine Interaktionen zwischen dem VSG Mantel und Bestandteilen des umgebenden Medium hin, welche die Entwicklung von Medikamenten mit dem VSG Mantel als Drug Target ermöglichen könnte. Das ursprünglich beobachtete Fluoreszenz-Signal war spezifisch für eine Kombination eines VSG namens VSG’Y’ und dem Triphenylmethan (TPM) Phenolrot. Der Austausch von Phenolrot gegen ein Brom-Derivat führte zur Beobachtung eines weiteren Fluoreszenz-Effekts, welcher unabhängig vom exprimierten VSG auftritt und letal für den Parasiten ist. Dieser so genannten Trypanozide Effekt lässt auf konservierte Strukturen schließen, welche von allen VSGs geteilt werden und als hochspezifisches Drug Target gegen T. b. brucei fungieren könnten. Das Ziel der vorliegenden Arbeit war es, die Mechanismen zu identifizieren, welche die einzigartige VSG’Y’-Fluoreszenz und den Trypanoziden Effekt auslösen. Fluoreszenz-Experimente und Protein-Mutagenese von VSG’Y’, sowie röntgenkristallographische Analysen mit mehreren unterschiedlichen VSGs wurden in dem Bestreben durchgeführt, die Bindung zwischen VSGs und TPMs zu charakterisieren, potentiell konservierte Strukturen von VSGs zu finden und die Mechanismen der einzigartigen VSG’Y’-Fluoreszenz und des Trypanoziden Effekts zu identifizieren. Diese Arbeiten haben das Potenzial die Formulierung hochspezifischer Medikamente mit VSGs als Drug Target anzutreiben. Im Rahmen der kristallographischen Analysen wurden die ersten vollständigen VSG Strukturen ermittelt, welche eine hohe Bedeutung für das Verständnis über die Bildung des VSG-Mantels haben. Die VSG Strukturen wurden u.a. per Röntgenkristallographie und Kleinwinkel-Röntgenstreuung aufgeschlüsselt und zeigten dass VSGs ein hohes Maß an Flexibilität besitzen. Diese Flexibilität ist wichtig für die Bildung eines dichten und hochmobilen VSG-Mantels. KW - Trypanosoma brucei brucei KW - Röntgenstrukturanalyse KW - Röntgen-Kleinwinkelstreuung KW - Mutagenese KW - Fluoreszenzmikroskopie KW - Variables Oberflächen Glycoprotein KW - VSG Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144775 ER - TY - THES A1 - Aufmkolk, Sarah T1 - Super-Resolution Microscopy of Synaptic Proteins T1 - Hochauflösende Mikroskopie von Synaptischen Proteinen N2 - The interaction of synaptic proteins orchestrate the function of one of the most complex organs, the brain. The multitude of molecular elements influencing neurological correlations makes imaging processes complicated since conventional fluorescence microscopy methods are unable to resolve structures beyond the diffraction-limit. The implementation of super-resolution fluorescence microscopy into the field of neuroscience allows the visualisation of the fine details of neural connectivity. The key element of my thesis is the super-resolution technique dSTORM (direct Stochastic Optical Reconstruction Microscopy) and its optimisation as a multi-colour approach. Capturing more than one target, I aim to unravel the distribution of synaptic proteins with nanometer precision and set them into a structural and quantitative context with one another. Therefore dSTORM specific protocols are optimized to serve the peculiarities of particular neural samples. In one project the brain derived neurotrophic factor (BDNF) is investigated in primary, hippocampal neurons. With a precision beyond 15 nm, preand post-synaptic sites can be identified by staining the active zone proteins bassoon and homer. As a result, hallmarks of mature synapses can be exhibited. The single molecule sensitivity of dSTORM enables the measurement of endogenous BDNF and locates BDNF granules aligned with glutamatergic pre-synapses. This data proofs that hippocampal neurons are capable of enriching BDNF within the mature glutamatergic pre-synapse, possibly influencing synaptic plasticity. The distribution of the metabotropic glutamate receptor mGlu4 is investigated in physiological brain slices enabling the analysis of the receptor in its natural environment. With dual-colour dSTORM, the spatial arrangement of the mGlu4 receptor in the pre-synaptic sites of parallel fibres in the molecular layer of the mouse cerebellum is visualized, as well as a four to six-fold increase in the density of the receptor in the active zone compared to the nearby environment. Prior functional measurements show that metabotropic glutamate receptors influence voltage-gated calcium channels and proteins that are involved in synaptic vesicle priming. Corresponding dSTORM data indeed suggests that a subset of the mGlu4 receptor is correlated with the voltage-gated calcium channel Cav2.1 on distances around 60 nm. These results are based on the improvement of the direct analysis of localisation data. Tools like coordinated based correlation analysis and nearest neighbour analysis of clusters centroids are used complementary to map protein connections of the synapse. Limits and possible improvements of these tools are discussed to foster the quantitative analysis of single molecule localisation microscopy data. Performing super-resolution microscopy on complex samples like brain slices benefits from a maximised field of view in combination with the visualisation of more than two targets to set the protein of interest in a cellular context. This challenge served as a motivation to establish a workflow for correlated structured illumination microscopy (SIM) and dSTORM. The development of the visualisation software coSIdSTORM promotes the combination of these powerful super-resolution techniques even on separated setups. As an example, synapses in the cerebellum that are affiliated to the parallel fibres and the dendrites of the Purkinje cells are identified by SIM and the protein bassoon of those pre-synapses is visualised threedimensionally with nanoscopic precision by dSTORM. In this work I placed emphasis on the improvement of multi-colour super-resolution imaging and its analysing tools to enable the investigation of synaptic proteins. The unravelling of the structural arrangement of investigated proteins supports the building of a synapse model and therefore helps to understand the relation between structure and function in neural transmission processes. N2 - Das Zusammenspiel von synaptischen Proteinen organisiert präzise die Funktion eines der komplexesten Organe, dem Gehirn. Die Vielfalt der molekularen Bestandteile, die diese neurologischen Beziehungen beeinflussen, verkomplizieren den Bildgebungsprozess, da die konventionellen Fluoreszenzmikroskopiemethoden Strukturen, die kleiner sind als das Beugungslimit, nicht auflösen können. Die Implementierung der hochauflösenden Fluoreszenzmikroskopie in das Gebiet der Neurowissenschaften ermöglicht die Visualisierung feiner Details neurologischer Verbindungen. Die hochauflösende Mikroskopietechnik dSTORM (direct Stochastic Optical Reconstruction Microscopy) und dessen Optimierung als Mehrfarbenanwendung sind Schlüsselelemente meiner Doktorarbeit. Mit der Möglichkeit mehr als ein Protein zu messen, ist es mein Ziel die Verteilung synaptischer Proteine mit nanometer Genauigkeit zu entschlüsseln und diese in ein strukturelles und quantitativ Verhältnis zueinander zu setzen. Aus diesem Grund wurden dSTORM spezifische Protokolle den Besonderheiten der jeweiligen neuronalen Proben angepasst und optimiert. In einem Projekt wird der neurotrophe Faktor BDNF (brain derived neurotrophic factor) in primären hippocampalen Neuronen untersucht. Mit einer Auflösungspräzision von unter 15 nm kann durch eine Färbung der Proteine Bassoon und Homer in der aktiven Zone die prä- und postsynaptische Seite identifiziert werden. Daraus resultierend können Kennzeichen für vollentwickelte Synapsen erfasst werden. Die Einzelmolekülsensitivität von dSTORM ermöglicht erstmalig die Messung von endogenem BDNF und zeigt, dass die BDNF Gruppierungen entlang von glutamatergen Präsynapsen verteilt sind. Diese Daten beweisen, dass hippocampale Neuronen die Möglichkeit haben, BDNF in der vollausgebildeten glutamatergen Präsynapse anzureichern und somit möglicherweise synaptische Plastizität beeinflussen. Die Verteilung des metabotropen Glutamatrezeptors mGlu4 wird in physiologischen Gehirnschnitten untersucht. Das ermöglicht den Rezeptor in seiner natürlichen Umgebung zu analysieren. Mit Zweifarben-dSTORM Messungen wird das räumliche Arrangement der mGlu4 Rezeptoren in der Präsynapse der parallelen Fasern der molekularen Schicht des Mauskleinhirns visualisiert und eine vier- bis sechsfache erhöhte Dichte des Rezeptors in der aktiven Zone, verglichen mit dem näheren Umfeld, aufgezeigt. Vorausgegangende funktionale Messungen zeigen, dass metabotrope Glutamatrezeptoren spannungsgesteuerte Calciumkanäle und Proteine, die in synaptische Vesikelgrundierung involviert sind, beeinflussen. Entsprechende dSTORM Daten deuten darauf hin, dass ein Teil der mGlu4 Rezeptoren mit dem spannungsgesteuerten Calciumkanal Cav2.1 auf einer Distanz von circa 60 nm korreliert ist. Diese Ergebnisse basieren auf der Verbesserung der direkten Analyse der Lokalisationsdatensätze. Werkzeuge, wie die Koordinaten basierte Korrelationsanalyse und die Nächste Nachbaranalyse von Clusterschwerpunkten werden sich ergänzend benutzt, um ein umfassendes Bild von Proteinverbindungen in der Synapse zu erzeugen. Die Grenzen und die Verbesserungsmöglichkeiten dieser Werkzeuge werden diskutiert, um die quantitative Analyse von Einzelmoleküldatensätzen voranzubringen. Die Durchführung von hochauflösender Mikroskopie an komplexen Proben, wie Gehirnschnitten, wird begünstigt durch die Maximierung der Aufnahmefläche in Kombination mit der Möglichkeit mehr als zwei Zielstrukturen zu visualisieren, um somit das Protein von primären Interesse in einen zellulären Zusammenhang zu setzen. Diese Herausforderung hat als Motivation gedient, ein Messprotokoll für korrelierte Strukturierte Beleuchtungsmikroskopie (SIM) und dSTORM zu etablieren. Die Entwicklung der Visualisierungssoftware coSIdSTORM erleichtert die Kombination dieser beiden leistungsstarken, hochauflösenden Techniken, sogar wenn diese auf getrennten Mikroskopieaufbauten umgesetzt werden. Als ein Beispiel werden Synapsen, die zwischen den parallelen Fasern in der molekularen Schicht des Cerebellums und den Purkinje-Zellen ausgebildet werden, mit SIM identifiziert und das Protein Bassoon in diesen Präsynapsen wird mit einer nanometergenauen Präzision drei-dimensional mit dSTORM Messungen visualisiert. In meiner Arbeit habe ich den Fokus auf die Weiterentwickelung von hochauflösender Mehrfarbenmikroskopie und die damit verbundenen analytischen Werkzeuge gelegt, sodass die Untersuchung von synaptischen Proteinen ermöglicht wird. Die Herausarbeitung des strukturellen Arrangements der untersuchten synaptischen Proteine unterstützt den Aufbau eines Models der Synapse und erweitert somit das Verständnis des Zusammenhangs von Struktur und Funktion in neuronalen Übertragungsvorgängen. KW - Hochauflösende Mikroskopie KW - correlative methods KW - Fluoreszenzmikroskopie KW - Synaptische Proteine KW - Korrelative Mikroskopie KW - dSTORM KW - SIM KW - fluorescence KW - super-resolution microscopy KW - localization microscopy KW - two-color microscopy KW - synapse KW - synaptic proteins Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151976 ER -