TY - JOUR A1 - Bolzoni, Francesco A1 - Esposti, Roberto A1 - Marchese, Silvia M. A1 - Pozzi, Nicoló G. A1 - Ramirez-Pasos, Uri E. A1 - Isaias, Ioannis U. A1 - Cavallari, Paolo T1 - Disrupt of intra-limb APA pattern in parkinsonian patients performing index-finger flexion JF - Frontiers in Physiology N2 - Voluntary movements induce postural perturbations which are counteracted by anticipatory postural adjustments (APAs). These actions are known to build up long fixation chains toward available support points (inter-limb APAs), so as to grant whole body equilibrium. Moreover, recent studies highlighted that APAs also build-up short fixation chains, within the same limb where a distal segment is moved (intra-limb APAs), aimed at stabilizing the proximal segments. The neural structures generating intra-limb APAs still need investigations; the present study aims to compare focal movement kinematics and intra-limb APA latencies and pattern between healthy subjects and parkinsonian patients, assuming the latter as a model of basal ganglia dysfunction. Intra-limb APAs that stabilize the arm when the index-finger is briskly flexed were recorded in 13 parkinsonian patients and in 10 age-matched healthy subjects. Index-finger movement was smaller in parkinsonian patients vs. healthy subjects (p = 0.01) and more delayed with respect to the onset of the prime mover flexor digitorum superficialis (FDS, p < 0.0001). In agreement with the literature, in all healthy subjects the FDS activation was preceded by an inhibitory intra-limb APA in biceps brachii (BB) and anterior deltoid (AD), and almost simultaneous to an excitatory intra-limb APA in triceps brachii (TB). In parkinsonian patients, no significant differences were found for TB and AD intra-limb APA timings, however only four patients showed an inhibitory intra-limb APA in BB, while other four did not show any BB intra-limb APAs and five actually developed a BB excitation. The frequency of occurrence of normal sign, lacking, and inverted BB APAs was different in healthy vs. parkinsonian participants (p = 0.0016). The observed alterations in index-finger kinematics and intra-limb APA pattern in parkinsonian patients suggest that basal ganglia, in addition to shaping the focal movement, may also contribute to intra-limb APA control. KW - intra-limb anticipatory postural adjustments KW - Parkinson disease KW - basal ganglia KW - motor control KW - human Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-369245 SN - 1664-042X VL - 9 ER - TY - JOUR A1 - Bahmer, Andreas A1 - Gupta, Daya Shankar T1 - Role of Oscillations in Auditory Temporal Processing: A General Model for Temporal Processing of Sensory Information in the Brain? JF - Frontiers in Neuroscience N2 - We review the role of oscillations in the brain and in the auditory system showing that the ability of humans to distinguish changes in pitch can be explained as a precise analysis of temporal information in auditory signals by neural oscillations. The connections between auditory brain stem chopper neurons construct neural oscillators, which discharge spikes at various constant intervals that are integer multiples of 0.4 ms, contributing to the temporal processing of auditory cochlear output. This is subsequently spatially mapped in the inferior colliculus. Electrophysiological measurements of auditory chopper neurons in different species show oscillations with periods which are integer multiples of 0.4 ms. The constant intervals of 0.4 ms can be attributed to the smallest synaptic delay between interconnected simulated chopper neurons. We also note the patterns of similarities between microcircuits in the brain stem and other parts of the brain (e.g., the pallidum, reticular formation, locus coeruleus, oculomotor nuclei, limbic system, amygdala, hippocampus, basal ganglia and substantia nigra), dedicated to the processing of temporal information. Similarities in microcircuits across the brain reflect the importance of one of the key mechanisms in the information processing in the brain, namely the temporal coupling of different neural events via coincidence detection. KW - canonical microcircuits KW - cochlear nucleus KW - locus coerulus KW - limbic system KW - amygdala KW - hippocampus KW - basal ganglia KW - substantia nigra Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196087 SN - 1662-453X VL - 12 IS - 793 ER -