TY - JOUR A1 - de Nijs, Laurence A1 - Choe, Kyonghwan A1 - Steinbusch, Hellen A1 - Schijns, Olaf E. M. G. A1 - Dings, Jim A1 - van den Hove, Daniel L. A. A1 - Rutten, Bart P. F. A1 - Hoogland, Govert T1 - DNA methyltransferase isoforms expression in the temporal lobe of epilepsy patients with a history of febrile seizures JF - Clinical Epigenetics N2 - Background Temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) is a common pharmaco-resistant epilepsy referred for adult epilepsy surgery. Though associated with prolonged febrile seizures (FS) in childhood, the neurobiological basis for this relationship is not fully understood and currently no preventive or curative therapies are available. DNA methylation, an epigenetic mechanism catalyzed by DNA methyltransferases (DNMTs), potentially plays a pivotal role in epileptogenesis associated with FS. In an attempt to start exploring this notion, the present cross-sectional pilot study investigated whether global DNA methylation levels (5-mC and 5-hmC markers) and DNMT isoforms (DNMT1, DNMT3a1, and DNMT3a2) expression would be different in hippocampal and neocortical tissues between controls and TLE patients with or without a history of FS. Results We found that global DNA methylation levels and DNMT3a2 isoform expression were lower in the hippocampus for all TLE groups when compared to control patients, with a more significant decrease amongst the TLE groups with a history of FS. Interestingly, we showed that DNMT3a1 expression was severely diminished in the hippocampus of TLE patients with a history of FS in comparison with control and other TLE groups. In the neocortex, we found a higher expression of DNMT1 and DNMT3a1 as well as increased levels of global DNA methylation for all TLE patients compared to controls. Conclusion Together, the findings of this descriptive cross-sectional pilot study demonstrated brain region-specific changes in DNMT1 and DNMT3a isoform expression as well as global DNA methylation levels in human TLE with or without a history of FS. They highlighted a specific implication of DNMT3a isoforms in TLE after FS. Therefore, longitudinal studies that aim at targeting DNMT3a isoforms to evaluate the potential causal relationship between FS and TLE or treatment of FS-induced epileptogenesis seem warranted. KW - febrile seizures KW - temporal lobe epilepsy KW - epigenetics KW - DNA methylation KW - DNA methyltransferases Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223636 VL - 11 ER - TY - JOUR A1 - Mehmood, Rashid A1 - Alsaleh, Alanoud A1 - Want, Muzamil Y. A1 - Ahmad, Ijaz A1 - Siraj, Sami A1 - Ishtiaq, Muhammad A1 - Alshehri, Faizah A. A1 - Naseem, Muhammad A1 - Yasuhara, Noriko T1 - Integrative molecular analysis of DNA methylation dynamics unveils molecules with prognostic potential in breast cancer JF - BioMedInformatics N2 - DNA methylation acts as a major epigenetic modification in mammals, characterized by the transfer of a methyl group to a cytosine. DNA methylation plays a pivotal role in regulating normal development, and misregulation in cells leads to an abnormal phenotype as is seen in several cancers. Any mutations or expression anomalies of genes encoding regulators of DNA methylation may lead to abnormal expression of critical molecules. A comprehensive genomic study encompassing all the genes related to DNA methylation regulation in relation to breast cancer is lacking. We used genomic and transcriptomic datasets from the Cancer Genome Atlas (TGCA) Pan-Cancer Atlas, Genotype-Tissue Expression (GTEx) and microarray platforms and conducted in silico analysis of all the genes related to DNA methylation with respect to writing, reading and erasing this epigenetic mark. Analysis of mutations was conducted using cBioportal, while Xena and KMPlot were utilized for expression changes and patient survival, respectively. Our study identified multiple mutations in the genes encoding regulators of DNA methylation. The expression profiling of these showed significant differences between normal and disease tissues. Moreover, deregulated expression of some of the genes, namely DNMT3B, MBD1, MBD6, BAZ2B, ZBTB38, KLF4, TET2 and TDG, was correlated with patient prognosis. The current study, to our best knowledge, is the first to provide a comprehensive molecular and genetic profile of DNA methylation machinery genes in breast cancer and identifies DNA methylation machinery as an important determinant of the disease progression. The findings of this study will advance our understanding of the etiology of the disease and may serve to identify alternative targets for novel therapeutic strategies in cancer. KW - DNA methylation KW - epigenetic modification KW - breast cancer KW - genomics KW - in silico analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321171 SN - 2673-7426 VL - 3 IS - 2 SP - 434 EP - 445 ER - TY - JOUR A1 - Vangeel, Elise Beau A1 - Pishva, Ehsan A1 - Hompes, Titia A1 - van den Hove, Daniel A1 - Lambrechts, Diether A1 - Allegaert, Karel A1 - Freson, Kathleen A1 - Izzi, Benedetta A1 - Claes, Stephan T1 - Newborn genome-wide DNA methylation in association with pregnancy anxiety reveals a potential role for \(GABBR1\) JF - Clinical Epigenetics N2 - Background: There is increasing evidence for the role of prenatal stress in shaping offspring DNA methylation and disease susceptibility. In the current study, we aimed to identify genes and pathways associated with pregnancy anxiety using a genome-wide DNA methylation approach. Methods: We selected 22 versus 23 newborns from our Prenatal Early Life Stress (PELS) cohort, exposed to the lowest or highest degree of maternal pregnancy anxiety, respectively. Cord blood genome-wide DNA methylation was assayed using the HumanMethylation450 BeadChip (HM450, n = 45) and candidate gene methylation using EpiTYPER (n = 80). Cortisol levels were measured at 2, 4, and 12 months of age to test infant stress system (re)activity. Results: Data showed ten differentially methylated regions (DMR) when comparing newborns exposed to low versus high pregnancy anxiety scores. We validated a top DMR in the GABA-B receptor subunit 1 gene (GABBR1) revealing the association with pregnancy anxiety particularly in male newborns (most significant CpG Pearson R = 0.517, p = 0.002; average methylation Pearson R = 0.332, p = 0.039). Cord blood GABBR1 methylation was associated with infant cortisol levels in response to a routine vaccination at 4 months old. Conclusions: In conclusion, our results show that pregnancy anxiety is associated with differential DNA methylation patterns in newborns and that our candidate gene GABBR1 is associated with infant hypothalamic-pituitary-adrenal axis response to a stressor. Our findings reveal a potential role for GABBR1 methylation in association with stress and provide grounds for further research. KW - DNA methylation KW - GABBR1 KW - gender differences KW - HPA axis KW - pregnancy anxiety KW - prenatal stress Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173825 VL - 9 ER - TY - JOUR A1 - Wiechmann, Tobias A1 - Röh, Simone A1 - Sauer, Susann A1 - Czamara, Darina A1 - Arloth, Janine A1 - Ködel, Maik A1 - Beintner, Madita A1 - Knop, Lisanne A1 - Menke, Andreas A1 - Binder, Elisabeth B. A1 - Provençal, Nadine T1 - Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus JF - Clinical Epigenetics N2 - Background Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. Results We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. Conclusion Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure. KW - DNA methylation KW - FKBP5 KW - glucocorticoid receptor KW - early-life stress KW - targeted bisulfite sequencing KW - dexamethasone Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233673 VL - 11 ER - TY - JOUR A1 - Schiele, Miriam A. A1 - Ziegler, Christiane A1 - Kollert, Leonie A1 - Katzorke, Andrea A1 - Schartner, Christoph A1 - Busch, Yasmin A1 - Gromer, Daniel A1 - Reif, Andreas A1 - Pauli, Paul A1 - Deckert, Jürgen A1 - Herrmann, Martin J. A1 - Domschke, Katharina T1 - Plasticity of Functional MAOA Gene Methylation in Acrophobia JF - International Journal of Neuropsychopharmacology N2 - Epigenetic mechanisms have been proposed to mediate fear extinction in animal models. Here, MAOA methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells before and after a 2-week exposure therapy in a sample of n = 28 female patients with acrophobia as well as in n = 28 matched healthy female controls. Clinical response was measured using the Acrophobia Questionnaire and the Attitude Towards Heights Questionnaire. The functional relevance of altered MAOA methylation was investigated by luciferase-based reporter gene assays. MAOA methylation was found to be significantly decreased in patients with acrophobia compared with healthy controls. Furthermore, MAOA methylation levels were shown to significantly increase after treatment and correlate with treatment response as reflected by decreasing Acrophobia Questionnaire/Attitude Towards Heights Questionnaire scores. Functional analyses revealed decreased reporter gene activity in presence of methylated compared with unmethylated pCpGfree_MAOA reporter gene vector constructs. The present proof-of-concept psychotherapy-epigenetic study for the first time suggests functional MAOA methylation changes as a potential epigenetic correlate of treatment response in acrophobia and fosters further investigation into the notion of epigenetic mechanisms underlying fear extinction. KW - monoamine oxidase A KW - anxiety KW - extinction KW - epigenetics KW - DNA methylation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228571 VL - 21 IS - 9 ER - TY - JOUR A1 - Schneider, Eberhard A1 - El Hajj, Nady A1 - Müller, Fabian A1 - Navarro, Bianca A1 - Haaf, Thomas T1 - Epigenetic Dysregulation in the Prefrontal Cortex of Suicide Completers JF - Cytogenetic and Genome Research N2 - The epigenome is thought to mediate between genes and the environment, particularly in response to adverse life experiences. Similar to other psychiatric diseases, the suicide liability of an individual appears to be influenced by many genetic factors of small effect size as well as by environmental stressors. To identify epigenetic marks associated with suicide, which is considered the endpoint of complex gene-environment interactions, we compared the cortex DNA methylation patterns of 6 suicide completers versus 6 non-psychiatric sudden-death controls, using Illumina 450K methylation arrays. Consistent with a multifactorial disease model, we found DNA methylation changes in a large number of genes, but no changes with large effects reaching genome-wide significance. Global methylation of all analyzed CpG sites was significantly (0.25 percentage point) lower in suicide than in control brains, whereas the vast majority (97%) of the top 1,000 differentially methylated regions (DMRs) were higher methylated (0.6 percentage point) in suicide brains. Annotation analysis of the top 1,000 DMRs revealed an enrichment of differentially methylated promoters in functional categories associated with transcription and expression in the brain. In addition, we performed a comprehensive literature research to identify suicide genes that have been replicated in independent genetic association, brain methylation and/or expression studies. Although, in general, there was no significant overlap between different published data sets or between our top 1,000 DMRs and published data sets, our methylation screen strengthens a number of candidate genes (APLP2, BDNF, HTR1A, NUAK1, PHACTR3, MSMP, SLC6A4, SYN2, and SYNE2) and supports a role for epigenetics in the pathophysiology of suicide. KW - Cortex KW - DNA methylation KW - Suicidal behavior KW - Transcription regulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199032 SN - 1424-8581 SN - 1424-859X VL - 146 IS - 1 ER - TY - JOUR A1 - Fiedler, David A1 - Hirsch, Daniela A1 - El Hajj, Nady A1 - Yang, Howard H. A1 - Hu, Yue A1 - Sticht, Carsten A1 - Nanda, Indrajit A1 - Belle, Sebastian A1 - Rueschoff, Josef A1 - Lee, Maxwell P. A1 - Ried, Thomas A1 - Haaf, Thomas A1 - Gaiser, Timo T1 - Genome‐wide DNA methylation analysis of colorectal adenomas with and without recurrence reveals an association between cytosine‐phosphate‐guanine methylation and histological subtypes JF - Genes, Chromosomes and Cancer N2 - Aberrant methylation of DNA is supposed to be a major and early driver of colonic adenoma development, which may result in colorectal cancer (CRC). Although gene methylation assays are used already for CRC screening, differential epigenetic alterations of recurring and nonrecurring colorectal adenomas have yet not been systematically investigated. Here, we collected a sample set of formalin‐fixed paraffin‐embedded colorectal low‐grade adenomas (n = 72) consisting of primary adenomas without and with recurrence (n = 59), recurrent adenomas (n = 10), and normal mucosa specimens (n = 3). We aimed to unveil differentially methylated CpG positions (DMPs) across the methylome comparing not only primary adenomas without recurrence vs primary adenomas with recurrence but also primary adenomas vs recurrent adenomas using the Illumina Human Methylation 450K BeadChip array. Unsupervised hierarchical clustering exhibited a significant association of methylation patterns with histological adenoma subtypes. No significant DMPs were identified comparing primary adenomas with and without recurrence. Despite that, a total of 5094 DMPs (false discovery rate <0.05; fold change >10%) were identified in the comparisons of recurrent adenomas vs primary adenomas with recurrence (674; 98% hypermethylated), recurrent adenomas vs primary adenomas with and without recurrence (241; 99% hypermethylated) and colorectal adenomas vs normal mucosa (4179; 46% hypermethylated). DMPs in cytosine‐phosphate‐guanine (CpG) islands were frequently hypermethylated, whereas open sea‐ and shelf‐regions exhibited hypomethylation. Gene ontology analysis revealed enrichment of genes associated with the immune system, inflammatory processes, and cancer pathways. In conclusion, our methylation data could assist in establishing a more robust and reproducible histological adenoma classification, which is a prerequisite for improving surveillance guidelines. KW - adenoma KW - DNA methylation KW - epigenetics KW - histological subtype KW - recurrence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212676 VL - 58 IS - 11 SP - 783 EP - 797 ER - TY - JOUR A1 - El Hajj, Nady A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Kraus, Theo F. J. A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - Schneider, Eberhard A1 - Haaf, Thomas T1 - Epigenetic dysregulation in the developing Down syndrome cortex JF - Epigenetics N2 - Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions. KW - trisomy 21 KW - DNA methylation KW - Down syndrome KW - fetal brain development KW - frontal cortex KW - protocadherin gamma cluster Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191239 VL - 11 IS - 8 ER - TY - JOUR A1 - Prelog, Martina A1 - Hilligardt, Deborah A1 - Schmidt, Christian A. A1 - Przybylski, Grzegorz K. A1 - Leierer, Johannes A1 - Almanzar, Giovanni A1 - El Hajj, Nady A1 - Lesch, Klaus-Peter A1 - Arolt, Volker A1 - Zwanzger, Peter A1 - Haaf, Thomas A1 - Domschke, Katharina T1 - Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder? JF - PLoS ONE N2 - Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders. KW - DNA methylation KW - antidepressants KW - regulatory T cells KW - panic disorder KW - treatment guidelines KW - telomere length KW - inflammatory diseases KW - anxiety disorders Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179684 VL - 11 IS - 6 ER - TY - JOUR A1 - Schneider, Eberhard A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - El Hajj, Nady A1 - Haaf, Thomas T1 - CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development JF - Gene N2 - Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny. KW - Autism spectrum disorders KW - DNA methylation KW - Genome KW - Autism KW - Frontal cortex KW - Human prefrontal cortex KW - Gene-expression KW - Schizophrenia KW - Patterns KW - Transcription KW - Epigenetics KW - Environment KW - Fetal brain development KW - DNA methylation dynamics KW - Methylome Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186936 VL - 592 IS - 1 ER -