TY - JOUR A1 - Zink, Miriam A1 - Seewald, Anne A1 - Rohrbach, Mareike A1 - Brodehl, Andreas A1 - Liedtke, Daniel A1 - Williams, Tatjana A1 - Childs, Sarah J. A1 - Gerull, Brenda T1 - Altered expression of TMEM43 causes abnormal cardiac structure and function in zebrafish JF - International Journal of Molecular Sciences N2 - Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease caused by heterozygous missense mutations within the gene encoding for the nuclear envelope protein transmembrane protein 43 (TMEM43). The disease is characterized by myocyte loss and fibro-fatty replacement, leading to life-threatening ventricular arrhythmias and sudden cardiac death. However, the role of TMEM43 in the pathogenesis of ACM remains poorly understood. In this study, we generated cardiomyocyte-restricted transgenic zebrafish lines that overexpress eGFP-linked full-length human wild-type (WT) TMEM43 and two genetic variants (c.1073C>T, p.S358L; c.332C>T, p.P111L) using the Tol2-system. Overexpression of WT and p.P111L-mutant TMEM43 was associated with transcriptional activation of the mTOR pathway and ribosome biogenesis, and resulted in enlarged hearts with cardiomyocyte hypertrophy. Intriguingly, mutant p.S358L TMEM43 was found to be unstable and partially redistributed into the cytoplasm in embryonic and adult hearts. Moreover, both TMEM43 variants displayed cardiac morphological defects at juvenile stages and ultrastructural changes within the myocardium, accompanied by dysregulated gene expression profiles in adulthood. Finally, CRISPR/Cas9 mutants demonstrated an age-dependent cardiac phenotype characterized by heart enlargement in adulthood. In conclusion, our findings suggest ultrastructural remodeling and transcriptomic alterations underlying the development of structural and functional cardiac defects in TMEM43-associated cardiomyopathy. KW - TMEM43 KW - arrhythmogenic cardiomyopathy KW - zebrafish KW - CRISPR/Cas9 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286025 SN - 1422-0067 VL - 23 IS - 17 ER - TY - JOUR A1 - Gerull, Brenda A1 - Brodehl, Andreas T1 - Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy JF - Current Heart Failure Reports N2 - Purpose of Review Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by life-threatening ventricular arrhythmias and sudden cardiac death (SCD) in apparently healthy young adults. Mutations in genes encoding for cellular junctions can be found in about half of the patients. However, disease onset and severity, risk of arrhythmias, and outcome are highly variable and drug-targeted treatment is currently unavailable. Recent Findings This review focuses on advances in clinical risk stratification, genetic etiology, and pathophysiological concepts. The desmosome is the central part of the disease, but other intercalated disc and associated structural proteins not only broaden the genetic spectrum but also provide novel molecular and cellular insights into the pathogenesis of ACM. Signaling pathways and the role of inflammation will be discussed and targets for novel therapeutic approaches outlined. Summary Genetic discoveries and experimental-driven preclinical research contributed significantly to the understanding of ACM towards mutation- and pathway-specific personalized medicine. KW - dilated cardiomyopathy KW - arrhythmogenic cardiomyopathy KW - junctions KW - sudden cardiac death KW - cardiovascular genetics KW - desmosomes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269916 SN - 1546-9549 VL - 18 IS - 6 ER - TY - JOUR A1 - Gerull, Brenda A1 - Brodehl, Andreas T1 - Genetic Animal Models for Arrhythmogenic Cardiomyopathy JF - Frontiers in Physiology N2 - Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell–cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy. KW - arrhythmogenic cardiomyopathy KW - desmosomes KW - animal models of human disease KW - sudden death KW - genetics KW - mouse KW - zebrafish Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206903 SN - 1664-042X VL - 11 IS - 264 ER -