TY - JOUR A1 - Kreinberg, Sören A1 - Porte, Xavier A1 - Schicke, David A1 - Lingnau, Benjamin A1 - Schneider, Christian A1 - Höfling, Sven A1 - Kanter, Ido A1 - Lüdge, Kathy A1 - Reitzenstein, Stephan T1 - Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels JF - Nature Communications N2 - Synchronization of coupled oscillators at the transition between classical physics and quantum physics has become an emerging research topic at the crossroads of nonlinear dynamics and nanophotonics. We study this unexplored field by using quantum dot microlasers as optical oscillators. Operating in the regime of cavity quantum electrodynamics (cQED) with an intracavity photon number on the order of 10 and output powers in the 100 nW range, these devices have high β-factors associated with enhanced spontaneous emission noise. We identify synchronization of mutually coupled microlasers via frequency locking associated with a sub-gigahertz locking range. A theoretical analysis of the coupling behavior reveals striking differences from optical synchronization in the classical domain with negligible spontaneous emission noise. Beyond that, additional self-feedback leads to zero-lag synchronization of coupled microlasers at ultra-low light levels. Our work has high potential to pave the way for future experiments in the quantum regime of synchronization. KW - nanoscale devices KW - quantum optics KW - semiconductor lasers Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229811 VL - 10 ER - TY - JOUR A1 - Das, Rathindra Nath A1 - Sounda, Sobhan Kumar T1 - Coherence and path indistinguishability for the interference of multiple single-mode fields JF - Indian Journal of Physics N2 - A well-known result for the interference of two single-mode fields is that the degree of coherence and the degree of indistinguishability are the same when we consider the detection of a single photon. In this article, we present the relation between the degree of coherence, path indistinguishability and the fringe visibility considering interference of multiple numbers of single-mode fields while being interested in the detection of a single photon only. We will also mention how Born’s rule of interference for multiple sources is reflected in these results. KW - path indistinguishability KW - coherence KW - quantum optics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325146 SN - 0973-1458 VL - 97 IS - 2 ER - TY - JOUR A1 - Astakhov, Georgy V. A1 - Fuchs, F. A1 - Soltamov, V. A. A1 - Väth, S. A1 - Baranov, P. G. A1 - Mokhov, E. N. A1 - Dyakonov, V. T1 - Silicon carbide light-emitting diode as a prospective room temperature source for single photons JF - Scientific Reports N2 - Generation of single photons has been demonstrated in several systems. However, none of them satisfies all the conditions, e.g. room temperature functionality, telecom wavelength operation, high efficiency, as required for practical applications. Here, we report the fabrication of light-emitting diodes (LEDs) based on intrinsic defects in silicon carbide (SiC). To fabricate our devices we used a standard semiconductor manufacturing technology in combination with high-energy electron irradiation. The room temperature electroluminescence (EL) of our LEDs reveals two strong emission bands in the visible and near infrared (NIR) spectral ranges, associated with two different intrinsic defects. As these defects can potentially be generated at a low or even single defect level, our approach can be used to realize electrically driven single photon source for quantum telecommunication and information processing. KW - semiconductors KW - inorganic LEDs KW - quantum optics KW - nanophotonics KW - plasmonics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96308 ER - TY - JOUR A1 - Brixner, Tobias A1 - Koch, Federico A1 - Kullmann, Martin A1 - Selig, Ulrike A1 - Nuernberger, Patrick A1 - Götz, Daniel C. G. A1 - Bringmann, Gerhard T1 - Coherent two-dimensional electronic spectroscopy in the Soret band of a chiral porphyrin dimer JF - New Journal of Physics N2 - Using coherent two-dimensional (2D) electronic spectroscopy in fully noncollinear geometry, we observe the excitonic coupling of β,β'-linked bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited state. The results for two states in the Soret band originating from an excitonic splitting are explained by population transfer with approximately 100 fs from the energetically higher to the lower excitonic state. This interpretation is consistent with exemplary calculations of 2D spectra for a model four-level system with coupling. KW - optics KW - quantum optics KW - laser Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96139 ER -