TY - JOUR A1 - Rohmer, Carina A1 - Dobritz, Ronja A1 - Tuncbilek-Dere, Dilek A1 - Lehmann, Esther A1 - Gerlach, David A1 - George, Shilpa Elizabeth A1 - Bae, Taeok A1 - Nieselt, Kay A1 - Wolz, Christiane T1 - Influence of Staphylococcus aureus strain background on Sa3int phage life cycle switches JF - Viruses N2 - Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation. KW - phage KW - virulence KW - induction KW - gene regulation KW - Staphylococcus KW - hemolysin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297209 SN - 1999-4915 VL - 14 IS - 11 ER - TY - JOUR A1 - El Mouali, Youssef A1 - Gerovac, Milan A1 - Mineikaitė, Raminta A1 - Vogel, Jörg T1 - In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid JF - Nucleic Acids Research N2 - FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level. KW - antisense RNA KW - Escherichia coli KW - chromosomal genes KW - protein KW - chaperone KW - virulence KW - family KW - HFQ KW - specificity KW - inhibition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261072 VL - 49 IS - 9 ER - TY - JOUR A1 - Alzheimer, Mona A1 - Svensson, Sarah L. A1 - König, Fabian A1 - Schweinlin, Matthias A1 - Metzger, Marco A1 - Walles, Heike A1 - Sharma, Cynthia M. T1 - A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni JF - PLoS Pathogens N2 - The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens. KW - in vitro KW - stem cells KW - invasion KW - host KW - adhesion KW - epithelial cells KW - translocation KW - virulence KW - responses KW - microenvironment Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229454 VL - 16 IS - 2 ER - TY - JOUR A1 - Papenfort, Kai A1 - Vogel, Jörg T1 - Small RNA functions in carbon metabolism and virulence of enteric pathogens JF - Frontiers in Cellular and Infection Microbiology N2 - Enteric pathogens often cycle between virulent and saprophytic lifestyles. To endure these frequent changes in nutrient availability and composition bacteria possess an arsenal of regulatory and metabolic genes allowing rapid adaptation and high flexibility. While numerous proteins have been characterized with regard to metabolic control in pathogenic bacteria, small non-coding RNAs have emerged as additional regulators of metabolism. Recent advances in sequencing technology have vastly increased the number of candidate regulatory RNAs and several of them have been found to act at the interface of bacterial metabolism and virulence factor expression. Importantly, studying these riboregulators has not only provided insight into their metabolic control functions but also revealed new mechanisms of post-transcriptional gene control. This review will focus on the recent advances in this area of host-microbe interaction and discuss how regulatory small RNAs may help coordinate metabolism and virulence of enteric pathogens. KW - sRNA KW - carbon metabolism KW - Hfq KW - CsrA KW - virulence Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197520 SN - 2235-2988 VL - 4 IS - 91 ER - TY - JOUR A1 - García-Martínez, Jorge A1 - Brunk, Michael A1 - Avalos, Javier A1 - Terpitz, Ulrich T1 - The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination JF - Scientific Reports N2 - Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO\(^{-}\) mutant and carO\(^{+}\) control strains showed a faster development of light-exposed carO-germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. KW - microbial rhodopsins KW - intracellular pH KW - membrane proteins KW - mutants KW - virulence KW - channelrhodopsin-2 KW - growth KW - gene KW - expression KW - bacteriorhodopsin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149049 VL - 5 IS - 7798 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Fieselmann, Astrid A1 - Fischer, Eva A1 - Popp, Jasmin A1 - Hensel, Michael A1 - Noster, Janina T1 - Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection JF - Frontiers in Cellular and Infection Microbiology N2 - The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology. KW - enterica serovar Typhimurium KW - bacterial invasion KW - mouse model KW - defenses KW - regulation KW - "-omics" KW - virulence KW - Salmonella-containing vacuole (SCV) KW - metabolism KW - nitric oxide Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149029 VL - 4 IS - 191 ER - TY - JOUR A1 - Okoro, Chinyere K. A1 - Barquist, Lars A1 - Connor, Thomas R. A1 - Harris, Simon R. A1 - Clare, Simon A1 - Stevens, Mark P. A1 - Arends, Mark J. A1 - Hale, Christine A1 - Kane, Leanne A1 - Pickard, Derek J. A1 - Hill, Jennifer A1 - Harcourt, Katherine A1 - Parkhill, Julian A1 - Dougan, Gordon A1 - Kingsley, Robert A. T1 - Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa JF - PLoS Neglected Tropical Diseases N2 - Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population. KW - genome sequence KW - infection KW - pathogenicity KW - children KW - disease KW - adults KW - identification KW - Escherichia coli KW - virulence Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143779 VL - 9 IS - 3 ER - TY - JOUR A1 - Irmer, Henriette A1 - Tarazona, Sonia A1 - Sasse, Christoph A1 - Olbermann, Patrick A1 - Loeffler, Jürgen A1 - Krappmann, Sven A1 - Conesa, Ana A1 - Braus, Gerhard H. T1 - RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior JF - BMC Genomics N2 - Background: Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results: We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions: We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. KW - Saccharomyces cerevisiae KW - cerebral aspergillosis KW - gene expression KW - Aspergillus fumigatus KW - iron homeostasis KW - invasive pulmonary aspergillosis KW - Candida albicans KW - cell wall KW - lysine biosynthesis KW - human pathogen KW - murine model KW - virulence KW - mRNA-Seq KW - transcriptome KW - human pathogenic fungi KW - secondary metabolite gene cluster KW - detoxification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151390 VL - 16 IS - 640 ER - TY - JOUR A1 - Schmidtke, Cornelius A1 - Findeiß, Sven A1 - Sharma, Cynthia M. A1 - Kuhfuss, Juliane A1 - Hoffmann, Steve A1 - Vogel, Jörg A1 - Stadler, Peter F. A1 - Bonas, Ulla T1 - Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions JF - Nucleic Acids Research N2 - The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14% of all mRNAs are leaderless and 13% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs. KW - SUBSP carotovora KW - regulatory RNA KW - gene-cluster KW - campestris PV vesicatoria KW - escherichia coli KW - determines pathgenicity KW - hypersensitive response KW - ralstonia solanacearum KW - extracellular enzymes KW - secretion systems KW - transcription initiation site KW - RNA sequence analyses KW - messanger RNA KW - plants KW - libraries KW - genome KW - genes KW - gene expression profiling KW - genetic transcription KW - northern blotting KW - untranslated regions KW - xanthomonas KW - xanthomonas campestris KW - bacteria KW - virulence KW - pathogenetic organism KW - RNA KW - small RNA KW - pathogenicity KW - type III secretion system pathways KW - maps KW - consesus KW - host (organism) KW - type III protein secretion system complex Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131781 VL - 40 IS - 5 SP - 2020 EP - 2031 ER - TY - JOUR A1 - Palige, Katja A1 - Linde, Jörg A1 - Martin, Ronny A1 - Böttcher, Bettina A1 - Citiulo, Francesco A1 - Sullivan, Derek J. A1 - Weber, Johann A1 - Staib, Claudia A1 - Rupp, Steffen A1 - Hube, Bernhard A1 - Morschhäuser, Joachim A1 - Staib, Peter T1 - Global Transcriptome Sequencing Identifies Chlamydospore Specific Markers in Candida albicans and Candida dubliniensis JF - PLoS ONE N2 - Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens. KW - NRG1 KW - staib agar KW - gene KW - morphogenesis KW - expression KW - regulator KW - virulence KW - growth KW - UME6 KW - epidemiology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131007 VL - 8 IS - 4 ER -