TY - JOUR A1 - Janz, Anna A1 - Walz, Katharina A1 - Cirnu, Alexandra A1 - Surjanto, Jessica A1 - Urlaub, Daniela A1 - Leskien, Miriam A1 - Kohlhaas, Michael A1 - Nickel, Alexander A1 - Brand, Theresa A1 - Nose, Naoko A1 - Wörsdörfer, Philipp A1 - Wagner, Nicole A1 - Higuchi, Takahiro A1 - Maack, Christoph A1 - Dudek, Jan A1 - Lorenz, Kristina A1 - Klopocki, Eva A1 - Ergün, Süleyman A1 - Duff, Henry J. A1 - Gerull, Brenda T1 - Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes JF - Molecular Metabolism N2 - Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy. KW - cell biology KW - molecular biology KW - dilated cardiomyopathy with ataxia KW - genetics KW - metabolism KW - mitochondria KW - OXPHOS KW - ROS KW - contractility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350393 SN - 2212-8778 VL - 79 ER - TY - JOUR A1 - Lodha, Manivel A1 - Muchsin, Ihsan A1 - Jürges, Christopher A1 - Juranic Lisnic, Vanda A1 - L’Hernault, Anne A1 - Rutkowski, Andrzej J. A1 - Prusty, Bhupesh K. A1 - Grothey, Arnhild A1 - Milic, Andrea A1 - Hennig, Thomas A1 - Jonjic, Stipan A1 - Friedel, Caroline C. A1 - Erhard, Florian A1 - Dölken, Lars T1 - Decoding murine cytomegalovirus JF - PLOS Pathogens N2 - The genomes of both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) were first sequenced over 20 years ago. Similar to HCMV, the MCMV genome had initially been proposed to harbor ≈170 open reading frames (ORFs). More recently, omics approaches revealed HCMV gene expression to be substantially more complex comprising several hundred viral ORFs. Here, we provide a state-of-the art reannotation of lytic MCMV gene expression based on integrative analysis of a large set of omics data. Our data reveal 365 viral transcription start sites (TiSS) that give rise to 380 and 454 viral transcripts and ORFs, respectively. The latter include 200 small ORFs, some of which represented the most highly expressed viral gene products. By combining TiSS profiling with metabolic RNA labelling and chemical nucleotide conversion sequencing (dSLAM-seq), we provide a detailed picture of the expression kinetics of viral transcription. This not only resulted in the identification of a novel MCMV immediate early transcript encoding the m166.5 ORF, which we termed ie4, but also revealed a group of well-expressed viral transcripts that are induced later than canonical true late genes and contain an initiator element (Inr) but no TATA- or TATT-box in their core promoters. We show that viral upstream ORFs (uORFs) tune gene expression of longer viral ORFs expressed in cis at translational level. Finally, we identify a truncated isoform of the viral NK-cell immune evasin m145 arising from a viral TiSS downstream of the canonical m145 mRNA. Despite being ≈5-fold more abundantly expressed than the canonical m145 protein it was not required for downregulating the NK cell ligand, MULT-I. In summary, our work will pave the way for future mechanistic studies on previously unknown cytomegalovirus gene products in an important virus animal model. KW - virology KW - genetics KW - molecular biology KW - immunology KW - microbiology KW - parasitology KW - murine cytomegalovirus (MCMV) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350480 SN - 1553-7374 VL - 19 IS - 5 ER - TY - JOUR A1 - Cerezo-Echevarria, Argiñe A1 - Kehl, Alexandra A1 - Beitzinger, Christoph A1 - Müller, Tobias A1 - Klopfleisch, Robert A1 - Aupperle-Lellbach, Heike T1 - Evaluating the histologic grade of digital squamous cell carcinomas in dogs and copy number variation of KIT Ligand — a correlation study JF - Veterinary Sciences N2 - Dark-haired dogs are predisposed to the development of digital squamous cell carcinoma (DSCC). This may potentially suggest an underlying genetic predisposition not yet completely elucidated. Some authors have suggested a potential correlation between the number of copies KIT Ligand (KITLG) and the predisposition of dogs to DSCC, containing a higher number of copies in those affected by the neoplasm. In this study, the aim was to evaluate a potential correlation between the number of copies of the KITLG and the histological grade of malignancy in dogs with DSCC. For this, 72 paraffin-embedded DSCCs with paired whole blood samples of 70 different dogs were included and grouped according to their haircoat color as follow: Group 0/unknown haircoat color (n = 11); Group 1.a/black non-Schnauzers (n = 15); group 1.b/black Schnauzers (n = 33); group 1.c/black and tan dogs (n = 7); group 2/tan animals (n = 4). The DSCCs were histologically graded. Additionally, KITLG Copy Number Variation (CNV) was determined by ddPCR. A significant correlation was observed between KITLG copy number and the histological grade and score value. This finding may suggest a possible factor for the development of canine DSCC, thus potentially having an impact on personalized veterinary oncological strategies and breeding programs. KW - canine KW - cancer KW - toe KW - grading KW - haircoat KW - color KW - genetics KW - gene Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304824 SN - 2306-7381 VL - 10 IS - 2 ER - TY - JOUR A1 - Sian-Hulsmann, Jeswinder A1 - Riederer, Peter T1 - The nigral coup in Parkinson's Disease by α-synuclein and its associated rebels JF - Cells N2 - The risk of Parkinson's disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson's disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder. KW - Parkinson's disease KW - substantia nigra KW - alpha-synuclein KW - genetics KW - iron KW - neuroinflammation KW - viruses KW - immunology KW - aging and cell death Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234073 SN - 2073-4409 VL - 10 IS - 3 ER - TY - JOUR A1 - Kühnisch, Jirko A1 - Herbst, Christopher A1 - Al‐Wakeel‐Marquard, Nadya A1 - Dartsch, Josephine A1 - Holtgrewe, Manuel A1 - Baban, Anwar A1 - Mearini, Giulia A1 - Hardt, Juliane A1 - Kolokotronis, Konstantinos A1 - Gerull, Brenda A1 - Carrier, Lucie A1 - Beule, Dieter A1 - Schubert, Stephan A1 - Messroghli, Daniel A1 - Degener, Franziska A1 - Berger, Felix A1 - Klaassen, Sabine T1 - Targeted panel sequencing in pediatric primary cardiomyopathy supports a critical role of TNNI3 JF - Clinical Genetics N2 - The underlying genetic mechanisms and early pathological events of children with primary cardiomyopathy (CMP) are insufficiently characterized. In this study, we aimed to characterize the mutational spectrum of primary CMP in a large cohort of patients ≤18 years referred to a tertiary center. Eighty unrelated index patients with pediatric primary CMP underwent genetic testing with a panel‐based next‐generation sequencing approach of 89 genes. At least one pathogenic or probably pathogenic variant was identified in 30/80 (38%) index patients. In all CMP subgroups, patients carried most frequently variants of interest in sarcomere genes suggesting them as a major contributor in pediatric primary CMP. In MYH7, MYBPC3, and TNNI3, we identified 18 pathogenic/probably pathogenic variants (MYH7 n = 7, MYBPC3 n = 6, TNNI3 n = 5, including one homozygous (TNNI3 c.24+2T>A) truncating variant. Protein and transcript level analysis on heart biopsies from individuals with homozygous mutation of TNNI3 revealed that the TNNI3 protein is absent and associated with upregulation of the fetal isoform TNNI1. The present study further supports the clinical importance of sarcomeric mutation—not only in adult—but also in pediatric primary CMP. TNNI3 is the third most important disease gene in this cohort and complete loss of TNNI3 leads to severe pediatric CMP. KW - cardiomyopathy KW - genetics KW - pediatrics KW - sarcomere KW - TNNI3 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213958 VL - 96 IS - 6 SP - 549 EP - 559 ER - TY - JOUR A1 - Gerull, Brenda A1 - Brodehl, Andreas T1 - Genetic Animal Models for Arrhythmogenic Cardiomyopathy JF - Frontiers in Physiology N2 - Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell–cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy. KW - arrhythmogenic cardiomyopathy KW - desmosomes KW - animal models of human disease KW - sudden death KW - genetics KW - mouse KW - zebrafish Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206903 SN - 1664-042X VL - 11 IS - 264 ER - TY - JOUR A1 - Müller, Stefanie H. A1 - Girard, Simon L. A1 - Hopfner, Franziska A1 - Merner, Nancy D. A1 - Bourassa, Cynthia V. A1 - Lorenz, Delia A1 - Clark, Lorraine N. A1 - Tittmann, Lukas A1 - Soto-Ortolaza, Alexandra I. A1 - Klebe, Stephan A1 - Hallett, Mark A1 - Schneider, Susanne A. A1 - Hodgkinson, Colin A. A1 - Lieb, Wolfgang A1 - Wszolek, Zbigniew K. A1 - Pendziwiat, Manuela A1 - Lorenzo-Betancor, Oswaldo A1 - Poewe, Werner A1 - Ortega-Cubero, Sara A1 - Seppi, Klaus A1 - Rajput, Alex A1 - Hussl, Anna A1 - Rajput, Ali H. A1 - Berg, Daniela A1 - Dion, Patrick A. A1 - Wurster, Isabel A1 - Shulman, Joshua M. A1 - Srulijes, Karin A1 - Haubenberger, Dietrich A1 - Pastor, Pau A1 - Vilariño-Güell, Carles A1 - Postuma, Ronald B. A1 - Bernard, Geneviève A1 - Ladwig, Karl-Heinz A1 - Dupré, Nicolas A1 - Jankovic, Joseph A1 - Strauch, Konstantin A1 - Panisset, Michel A1 - Winkelmann, Juliane A1 - Testa, Claudia M. A1 - Reischl, Eva A1 - Zeuner, Kirsten E. A1 - Ross, Owen A. A1 - Arzberger, Thomas A1 - Chouinard, Sylvain A1 - Deuschl, Günther A1 - Louis, Elan D. A1 - Kuhlenbäumer, Gregor A1 - Rouleau, Guy A. T1 - Genome-wide association study in essential tremor identifies three new loci JF - Brain N2 - We conducted a genome-wide association study of essential tremor, a common movement disorder characterized mainly by a postural and kinetic tremor of the upper extremities. Twin and family history studies show a high heritability for essential tremor. The molecular genetic determinants of essential tremor are unknown. We included 2807 patients and 6441 controls of European descent in our two-stage genome-wide association study. The 59 most significantly disease-associated markers of the discovery stage were genotyped in the replication stage. After Bonferroni correction two markers, one (rs10937625) located in the serine/threonine kinase STK32B and one (rs17590046) in the transcriptional coactivator PPARGC1A were associated with essential tremor. Three markers (rs12764057, rs10822974, rs7903491) in the cell-adhesion molecule CTNNA3 were significant in the combined analysis of both stages. The expression of STK32B was increased in the cerebellar cortex of patients and expression quantitative trait loci database mining showed association between the protective minor allele of rs10937625 and reduced expression in cerebellar cortex. We found no expression differences related to disease status or marker genotype for the other two genes. Replication of two lead single nucleotide polymorphisms of previous small genome-wide association studies (rs3794087 in SLC1A2, rs9652490 in LINGO1) did not confirm the association with essential tremor. KW - quality-control KW - disease KW - tool KW - movement disorders KW - genome-wide association study KW - tremor KW - genetics KW - essential tremor Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186541 VL - 139 ER - TY - JOUR A1 - Sadovnick, A. Dessa A1 - Traboulsee, Anthony L. A1 - Bernales, Cecily Q. A1 - Ross, Jay P. A1 - Forwell, Amanda L. A1 - Yee, Irene M. A1 - Guillot-Noel, Lena A1 - Fontaine, Bertrand A1 - Cournu-Rebeix, Isabelle A1 - Alcina, Antonio A1 - Fedetz, Maria A1 - Izquierdo, Guillermo A1 - Matesanz, Fuencisla A1 - Hilven, Kelly A1 - Dubois, Bénédicte A1 - Goris, An A1 - Astobiza, Ianire A1 - Alloza, Iraide A1 - Antigüedad, Alfredo A1 - Vandenbroeck, Koen A1 - Akkad, Denis A. A1 - Aktas, Orhan A1 - Blaschke, Paul A1 - Buttmann, Mathias A1 - Chan, Andrew A1 - Epplen, Joerg T. A1 - Gerdes, Lisa-Ann A1 - Kroner, Antje A1 - Kubisch, Christian A1 - Kümpfel, Tania A1 - Lohse, Peter A1 - Rieckmann, Peter A1 - Zettl, Uwe K. A1 - Zipp, Frauke A1 - Bertram, Lars A1 - Lill, Christina M. A1 - Fernandez, Oscar A1 - Urbaneja, Patricia A1 - Leyva, Laura A1 - Alvarez-Cermeño, Jose Carlos A1 - Arroyo, Rafael A1 - Garagorri, Aroa M. A1 - García-Martínez, Angel A1 - Villar, Luisa M. A1 - Urcelay, Elena A1 - Malhotra, Sunny A1 - Montalban, Xavier A1 - Comabella, Manuel A1 - Berger, Thomas A1 - Fazekas, Franz A1 - Reindl, Markus A1 - Schmied, Mascha C. A1 - Zimprich, Alexander A1 - Vilariño-Güell, Carles T1 - Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients JF - G3: Genes Genomes Genetics N2 - Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93–1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility. KW - multiple sclerosis KW - genetics KW - linkage KW - association KW - plasminogen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165405 VL - 6 IS - 7 ER - TY - JOUR A1 - Vona, Barbara A1 - Nanda, Indrajit A1 - Shehata-Dieler, Wafaa A1 - Haaf, Thomas T1 - Genetics of Tinnitus: Still in its Infancy JF - Frontiers in Neuroscience N2 - Tinnitus is the perception of a phantom sound that affects between 10 and 15% of the general population. Despite this considerable prevalence, treatments for tinnitus are presently lacking. Tinnitus exhibits a diverse array of recognized risk factors and extreme clinical heterogeneity. Furthermore, it can involve an unknown number of auditory and non-auditory networks and molecular pathways. This complex combination has hampered advancements in the field. The identification of specific genetic factors has been at the forefront of several research investigations in the past decade. Nine studies have examined genes in a case-control association approach. Recently, a genome-wide association study has highlighted several potentially significant pathways that are implicated in tinnitus. Two twin studies have calculated a moderate heritability for tinnitus and disclosed a greater concordance rate in monozygotic twins compared to dizygotic twins. Despite the more recent data alluding to genetic factors in tinnitus, a strong association with any specific genetic locus is lacking and a genetic study with sufficient statistical power has yet to be designed. Future research endeavors must overcome the many inherent limitations in previous study designs. This review summarizes the previously embarked upon tinnitus genetic investigations and summarizes the hurdles that have been encountered. The identification of candidate genes responsible for tinnitus may afford gene based diagnostic approaches, effective therapy development, and personalized therapeutic intervention. KW - twin study KW - complex disorders KW - genetics KW - genetic heterogeneity KW - genome-wide association study (GWAS) KW - hearing loss KW - tinnitus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170926 VL - 11 IS - 236 ER - TY - JOUR A1 - Hofmann, Lukas A1 - Karl, Franziska A1 - Sommer, Claudia A1 - Üçeyler, Nurcan T1 - Affective and cognitive behavior in the alpha-galactosidase A deficient mouse model of Fabry disease JF - PLoS ONE N2 - Fabry disease is an X-linked inherited lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A (α-Gal A) deficiency. Fabry patients frequently report of anxiety, depression, and impaired cognitive function. We characterized affective and cognitive phenotype of male mice with α-Gal A deficiency (Fabry KO) and compared results with those of age-matched male wildtype (WT) littermates. Young (3 months) and old (≥ 18 months) mice were tested in the naïve state and after i.pl. injection of complete Freund`s adjuvant (CFA) as an inflammatory pain model. We used the elevated plus maze (EPM), the light-dark box (LDB) and the open field test (OF) to investigate anxiety-like behavior. The forced swim test (FST) and Morris water maze (MWM) were applied to assess depressive-like and learning behavior. The EPM test revealed no intergroup difference for anxiety-like behavior in naïve young and old Fabry KO mice compared to WT littermates, except for longer time spent in open arms of the EPM for young WT mice compared to young Fabry KO mice (p<0.05). After CFA injection, young Fabry KO mice showed increased anxiety-like behavior compared to young WT littermates (p<0.05) and naïve young Fabry KO mice (p<0.05) in the EPM as reflected by shorter time spent in EPM open arms. There were no relevant differences in the LDB and the OF test, except for longer time spent in the center zone of the OF by young WT mice compared to young Fabry KO mice (p<0.05). Complementary to this, depression-like and learning behavior were not different between genotypes and age-groups, except for the expectedly lower memory performance in older age-groups compared to young mice. Our results indicate that genetic influences on affective and cognitive symptoms in FD may be of subordinate relevance, drawing attention to potential influences of environmental and epigenetic factors. KW - cognitive impairment KW - mouse models KW - depression KW - swimming KW - learning KW - Fabry disease KW - genetics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170745 VL - 12 IS - 6 ER -