TY - JOUR A1 - Fusi, Lorenza A1 - Paudel, Rupesh A1 - Meder, Katharina A1 - Schlosser, Andreas A1 - Schrama, David A1 - Goebeler, Matthias A1 - Schmidt, Marc T1 - Interaction of transcription factor FoxO3 with histone acetyltransferase complex subunit TRRAP modulates gene expression and apoptosis JF - Journal of Biological Chemistry N2 - Forkhead box O (FoxO) transcription factors are conserved proteins involved in the regulation of life span and age-related diseases, such as diabetes and cancer. Stress stimuli or growth factor deprivation promotes nuclear localization and activation of FoxO proteins, which—depending on the cellular context—can lead to cell cycle arrest or apoptosis. In endothelial cells (ECs), they further regulate angiogenesis and may promote inflammation and vessel destabilization implicating a role of FoxOs in vascular diseases. In several cancers, FoxOs exert a tumor-suppressive function by regulating proliferation and survival. We and others have previously shown that FoxOs can regulate these processes via two different mechanisms: by direct binding to forkhead-responsive elements at the promoter of target genes or by a poorly understood alternative process that does not require direct DNA binding and regulates key targets in primary human ECs. Here, we performed an interaction study in ECs to identify new nuclear FoxO3 interaction partners that might contribute to FoxO-dependent gene regulation. Mass spectrometry analysis of FoxO3-interacting proteins revealed transformation/transcription domain–associated protein (TRRAP), a member of multiple histone acetyltransferase complexes, as a novel binding partner of FoxO family proteins. We demonstrate that TRRAP is required to support FoxO3 transactivation and FoxO3-dependent G1 arrest and apoptosis in ECs via transcriptional activation of the cyclin-dependent kinase inhibitor p27\(^{kip1}\) and the proapoptotic B-cell lymphoma 2 family member, BIM. Moreover, FoxO–TRRAP interaction could explain FoxO-induced alternative gene regulation via TRRAP-dependent recruitment to target promoters lacking forkhead-responsive element sequences. KW - FoxO3 KW - TRRAP KW - transcription factors Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299820 VL - 298 IS - 3 ER - TY - JOUR A1 - Klein-Hessling, Stefan A1 - Rudolf, Ronald A1 - Muhammad, Khalid A1 - Knobeloch, Klaus-Peter A1 - Maqbool, Muhammad Ahmad A1 - Cauchy, Pierre A1 - Andrau, Jean-Christophe A1 - Avots, Andris A1 - Talora, Claudio A1 - Ellenrieder, Volker A1 - Screpanti, Isabella A1 - Serfling, Edgar A1 - Patra, Amiya Kumar T1 - A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development JF - Nature Communications N2 - NFATc1 plays a critical role in double-negative thymocyte survival and differentiation. However, the signals that regulate Nfatc1 expression are incompletely characterized. Here we show a developmental stage-specific differential expression pattern of Nfatc1 driven by the distal (P1) or proximal (P2) promoters in thymocytes. Whereas, preTCR-negative thymocytes exhibit only P2 promoter-derived Nfatc1β expression, preTCR-positive thymocytes express both Nfatc1β and P1 promoter-derived Nfatc1α transcripts. Inducing NFATc1α activity from P1 promoter in preTCR-negative thymocytes, in addition to the NFATc1β from P2 promoter impairs thymocyte development resulting in severe T-cell lymphopenia. In addition, we show that NFATc1 activity suppresses the B-lineage potential of immature thymocytes, and consolidates their differentiation to T cells. Further, in the pTCR-positive DN3 cells, a threshold level of NFATc1 activity is vital in facilitating T-cell differentiation and to prevent Notch3-induced T-acute lymphoblastic leukaemia. Altogether, our results show NFATc1 activity is crucial in determining the T-cell fate of thymocytes. KW - acute lymphocytic leukaemia KW - transcription factors KW - lymphocyte differentiation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172974 VL - 7 ER - TY - JOUR A1 - Sturm, Laura A1 - Geißel, Bernadette A1 - Martin, Ronny A1 - Wagener, Johannes T1 - Differentially Regulated Transcription Factors and ABC Transporters in a Mitochondrial Dynamics Mutant Can Alter Azole Susceptibility of Aspergillus fumigatus JF - Frontiers in Microbiology N2 - Azole resistance of the fungal pathogen Aspergillus fumigatus is an emerging problem. To identify novel mechanisms that could mediate azole resistance in A. fumigatus, we analyzed the transcriptome of a mitochondrial fission/fusion mutant that exhibits increased azole tolerance. Approximately 12% of the annotated genes are differentially regulated in this strain. This comprises upregulation of Cyp51A, the azole target structure, upregulation of ATP-binding cassette (ABC) superfamily and major facilitator superfamily (MFS) transporters and differential regulation of transcription factors. To study their impact on azole tolerance, conditional mutants were constructed of seven ABC transporters and 17 transcription factors. Under repressed conditions, growth rates and azole susceptibility of the mutants were similar to wild type. Under induced conditions, several transcription factor mutants showed growth phenotypes. In addition, four ABC transporter mutants and seven transcription factor mutants exhibited altered azole susceptibility. However, deletion of individual identified ABC transporters and transcription factors did not affect the increased azole tolerance of the fission/fusion mutant. Our results revealed the ability of multiple ABC transporters and transcription factors to modulate the azole susceptibility of A. fumigatus and support a model where mitochondrial dysfunctions trigger a drug resistance network that mediates azole tolerance of this mold. KW - mitochondrial dynamics KW - azole resistance KW - efflux pumps KW - transcription factors Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204874 SN - 1664-302X VL - 11 ER - TY - JOUR A1 - Telorac, Jonas A1 - Prykhozhij, Sergey V. A1 - Schöne, Stefanie A1 - Meierhofer, David A1 - Sauer, Sascha A1 - Thomas-Chollier, Morgane A1 - Meijsing, Sebastiaan H. T1 - Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements JF - Nucleic Acids Research N2 - Out of the myriad of potential DNA binding sites of the glucocorticoid receptor (GR) found in the human genome, only a cell-type specific minority is actually bound, indicating that the presence of a recognition sequence alone is insufficient to specify where GR binds. Cooperative interactions with other transcription factors (TFs) are known to contribute to binding specificity. Here, we reasoned that sequence signals preventing GR recruitment to certain loci provide an alternative means to confer specificity. Motif analyses uncovered candidate Negative Regulatory Sequences (NRSs) that interfere with genomic GR binding. Subsequent functional analyses demonstrated that NRSs indeed prevent GR binding to nearby response elements. We show that NRS activity is conserved across species, found in most tissues and that they also interfere with the genomic binding of other TFs. Interestingly, the effects of NRSs appear not to be a simple consequence of changes in chromatin accessibility. Instead, we find that NRSs interact with proteins found at sub-nuclear structures called paraspeckles and that these proteins might mediate the repressive effects of NRSs. Together, our studies suggest that the joint influence of positive and negative sequence signals partition the genome into regions where GR can bind and those where it cannot. KW - DNA sequencing KW - glucocorticoid receptor KW - DNA binding KW - transcription factors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166330 VL - 44 IS - 13 ER - TY - JOUR A1 - Hampe, Irene A. I. A1 - Friedman, Justin A1 - Edgerton, Mira A1 - Morschhäuser, Joachim T1 - An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses JF - PLoS Pathogens N2 - The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches. KW - antimicrobial resistance KW - transcriptional control KW - Candida albicans KW - transcription factors KW - mutation KW - hyperexpression techniques KW - antifungals KW - point mutation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158883 VL - 13 IS - 9 ER - TY - JOUR A1 - Fehrholz, Markus A1 - Seidenspinner, Silvia A1 - Kunzmann, Steffen T1 - Expression of surfactant protein B is dependent on cell density in H441 lung epithelial cells JF - PLoS ONE N2 - Background Expression of surfactant protein (SP)-B, which assures the structural stability of the pulmonary surfactant film, is influenced by various stimuli, including glucocorticoids; however, the role that cell-cell contact plays in SP-B transcription remains unknown. The aim of the current study was to investigate the impact of cell-cell contact on SP-B mRNA and mature SP-B expression in the lung epithelial cell line H441. Methods Different quantities of H441 cells per growth area were either left untreated or incubated with dexamethasone. The expression of SP-B, SP-B transcription factors, and tight junction proteins were determined by qPCR and immunoblotting. The influence of cell density on SP-B mRNA stability was investigated using the transcription inhibitor actinomycin D. Results SP-B mRNA and mature SP-B expression levels were significantly elevated in untreated and dexamethasone-treated H441 cells with increasing cell density. High cell density as a sole stimulus was found to barely have an impact on SP-B transcription factor and tight junction mRNA levels, while its stimulatory ability on SP-B mRNA expression could be mimicked using SP-B-negative cells. SP-B mRNA stability was significantly increased in high-density cells, but not by dexamethasone alone. Conclusion SP-B expression in H441 cells is dependent on cell-cell contact, which increases mRNA stability and thereby potentiates the glucocorticoid-mediated induction of transcription. Loss of cell integrity might contribute to reduced SP-B secretion in damaged lung cells via downregulation of SP-B transcription. Cell density-mediated effects should thus receive greater attention in future cell culture-based research. KW - messenger RNA KW - surfactants KW - epithelial cells KW - transcription factors KW - gene expression KW - tight junctions KW - adenocarcinoma of the lung KW - immunoblotting Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158291 VL - 12 IS - 9 ER - TY - JOUR A1 - Klotz, Barbara A1 - Mentrup, Birgit A1 - Regensburger, Martina A1 - Zeck, Sabine A1 - Schneidereit, Jutta A1 - Schupp, Nicole A1 - Linden, Christian A1 - Merz, Cornelia A1 - Ebert, Regina A1 - Jakob, Franz T1 - 1,25-Dihydroxyvitamin D3 Treatment Delays Cellular Aging in Human Mesenchymal Stem Cells while Maintaining Their Multipotent Capacity JF - PLoS ONE N2 - 1,25-dihydroxyvitamin D3 (1,25D3) was reported to induce premature organismal aging in fibroblast growth factor-23 (Fgf23) and klotho deficient mice, which is of main interest as 1,25D3 supplementation of its precursor cholecalciferol is used in basic osteoporosis treatment. We wanted to know if 1,25D3 is able to modulate aging processes on a cellular level in human mesenchymal stem cells (hMSC). Effects of 100 nM 1,25D3 on hMSC were analyzed by cell proliferation and apoptosis assay, beta-galactosidase staining, VDR and surface marker immunocytochemistry, RT-PCR of 1,25D3-responsive, quiescence-and replicative senescence-associated genes. 1,25D3 treatment significantly inhibited hMSC proliferation and apoptosis after 72 h and delayed the development of replicative senescence in long-term cultures according to beta-galactosidase staining and P16 expression. Cell morphology changed from a fibroblast like appearance to broad and rounded shapes. Long term treatment did not induce lineage commitment in terms of osteogenic pathways but maintained their clonogenic capacity, their surface marker characteristics (expression of CD73, CD90, CD105) and their multipotency to develop towards the chondrogenic, adipogenic and osteogenic pathways. In conclusion, 1,25D3 delays replicative senescence in primary hMSC while the pro-aging effects seen in mouse models might mainly be due to elevated systemic phosphate levels, which propagate organismal aging. KW - perspectives KW - bone marrow KW - mutant mice KW - oxidative stress KW - transcription factors KW - vitamin-D-receptor KW - differentiation KW - tissue KW - 2',7'-dichlorofluorescin KW - homeostasis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133392 VL - 7 IS - 1 ER - TY - JOUR A1 - Amich, Jorge A1 - Schafferer, Lukas A1 - Haas, Hubertus A1 - Krappmann, Sven T1 - Regulation of Sulphur Assimilation Is Essential for Virulence and Affects Iron Homeostasis of the Human-Pathogenic Mould Aspergillus fumigatus JF - PLoS Pathogens N2 - Abstract Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen. Author Summary Invasive pulmonary aspergillosis (IPA) is a life-threatening disease that affects primarily immunosuppressed patients. During the last decades the incidence of this disease that is accompanied by high mortality rates has increased. Since opportunistic pathogenic fungi, unlike other pathogens, do not express specific virulence factors, it is becoming more and more clear that the elucidation of fungal metabolism is an essential task to understand fungal pathogenicity and to identify novel antifungal targets. In this work we report genetic inactivation of the sulphur transcription regulator MetR in Aspergillus fumigatus and subsequent study of the resulting phenotypes and transcriptional deregulation of the mutant. Here we show that regulation of sulphur assimilation is an essential process for the manifestation of IPA. Moreover, a regulatory connection between sulphur metabolism and iron homeostasis, a further essential virulence determinant of A. fumigatus, is demonstrated in this study for the first time. A deeper knowledge of sulphur metabolism holds the promise of increasing our understanding of fungal virulence and might lead to improved antifungal therapy. KW - gene regulation KW - transcription factors KW - DNA transcription KW - aspergillus fumigatus KW - methionine KW - sulfur KW - fungal pathogens KW - sulfates Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130372 VL - 9 IS - 8 ER - TY - JOUR A1 - Salat, Daniela A1 - Winkler, Anja A1 - Urlaub, Henning A1 - Gessler, Manfred T1 - Hey bHLH Proteins Interact with a FBXO45 Containing SCF Ubiquitin Ligase Complex and Induce Its Translocation into the Nucleus JF - PLoS One N2 - The Hey protein family, comprising Hey1, Hey2 and HeyL in mammals, conveys Notch signals in many cell types. The helix-loop-helix (HLH) domain as well as the Orange domain, mediate homo- and heterodimerization of these transcription factors. Although distinct interaction partners have been identified so far, their physiological relevance for Hey functions is still largely unclear. Using a tandem affinity purification approach and mass spectrometry analysis we identified members of an ubiquitin E3-ligase complex consisting of FBXO45, PAM and SKP1 as novel Hey1 associated proteins. There is a direct interaction between Hey1 and FBXO45, whereas FBXO45 is needed to mediate indirect Hey1 binding to SKP1. Expression of Hey1 induces translocation of FBXO45 and PAM into the nucleus. Hey1 is a short-lived protein that is degraded by the proteasome, but there is no evidence for FBXO45-dependent ubiquitination of Hey1. On the contrary, Hey1 mediated nuclear translocation of FBXO45 and its associated ubiquitin ligase complex may extend its spectrum to additional nuclear targets triggering their ubiquitination. This suggests a novel mechanism of action for Hey bHLH factors. KW - ubiquitination KW - glycerol KW - transcription factors KW - DNA-binding proteins KW - immunoprecipitation KW - protein interactions KW - protein domains Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125769 VL - 10 IS - 6 ER - TY - JOUR A1 - Zhang, Yi A1 - Lee, Chil-Woo A1 - Wehner, Nora A1 - Imdahl, Fabian A1 - Svetlana, Veselova A1 - Weiste, Christoph A1 - Dröge-Laser, Wolfgang A1 - Deeken, Rosalia T1 - Regulation of Oncogene Expression in T-DNA-Transformed Host Plant Cells JF - PLoS Pathogens N2 - Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance cytokinin and auxin levels for further cell proliferation. KW - luminescence KW - oncogenes KW - agrobacterium tumefaciens KW - transcription factors KW - auxins KW - gene expression KW - cytokinins KW - plant cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125256 VL - 11 IS - 1 ER -