TY - THES A1 - Elsässer, Sebastian T1 - Lattice dynamics and spin-phonon coupling in the multiferroic oxides Eu(1-x)Ho(x)MnO3 and ACrO2 T1 - Gitterdynamik und Spin-Phonon Kopplung in den multiferroischen Oxiden Eu(1-x)Ho(x)MnO3 und ACrO2 N2 - The focus of this thesis is the investigation of the lattice dynamics and the coupling of magnetism and phonons in two different multiferroic model systems. The first system, which constitutes the main part in this work is the system of multiferroic manganites RMnO$_{3}$, in particular Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ with $0 \le x \le 0.5$. Its cycloidal spin arrangement leads to the emergence of the ferroelectric polarization via the inverse Dzyaloshinskii-Moriya interaction. This system is special among RMnO$_{3}$ as with increasing Ho content $x$, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ does not only become multiferroic, but due to the exchange interaction with the magnetic Ho-ion, the spin cycloid (and with it the electric polarization) is also flipped for higher Ho contents. This makes it one of the first compounds, where the cycloidal reorientation happens spontaneously, rather than with the application of external fields. On the other hand, there is the delafossite ACrO$_{2}$ system. Here, due to symmetry reasons, the spin-spiral pattern can not induce the polarization according to the inverse Dzyaloshinskii-Moriya interaction mechanism. Instead, it is thought that another way of magnetoelectric coupling is involved, which affects the charge distribution in the $d-p$ hybridized orbitals of the bonds. The lattice vibrations as well as the quasi-particle of the multiferroic phase, the electromagnon, are studied by Raman spectroscopy. Lattice vibrations like the B$_{3g}$(1) mode, which involves vibrations of the Mn-O-Mn bonds modulate the exchange interaction and serve as a powerful tool for the investigation of magnetic correlations effects with high frequency accuracy. Raman spectroscopy acts as a local probe as even local magnetic correlations directly affect the phonon vibration frequency, revealing coupling effects onto the lattice dynamics even in the absence of global magnetic order. By varying the temperature, the coupling is investigated and unveils a renormalization of the phonon frequency as the magnetic order develops. For Eu$_{1-x}$Ho$_{x}$MnO$_{3}$, the analysis of this spin-induced phonon frequency renormalization enables the quantitative determination of the in-plane spin-phonon coupling strengths. This formalism, introduced by Granado et al., is extended here to evaluate the out-of-plane coupling strengths, which is enabled by the identification of a previously elusive feature as a vibrational mode. The complete picture is obtained by studying the lattice- and electromagnon dynamics in the magnetic field. Further emphasis is put towards the development of the cycloidal spin structure and correlations with temperature. A new model of describing the temperature-dependent behavior of said spin correlations is proposed and can consistently explain ordering phenomena which were until now unaddressed. The results are underscored with Monte Carlo based simulations of the spin dynamics with varying temperature. Furthermore, a novel effect of a tentative violation of the Raman selection rules in Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ was discovered. While the phonon modes can be separated and identified by their symmetry by choosing appropriate polarization configurations, in a very narrow temperature range, Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ shows an increase of phonon intensities in polarization configurations where they should be forbidden. This is interpreted as a sign of local disorder, caused by 90° domain walls and could be explained within the model framework. This course of action is followed with the material system of delafossites ACrO$_{2}$. Being a relatively new class of multiferroic materials, the investigations on ACrO$_{2}$ are also of characterizing nature. For this, shell model calculations are performed as a reference to compare the vibrational frequencies obtained by the Raman experiments to. A renormalization of the vibrational frequencies is observed in this system as well and systematically analyzed across the sample series of \textit{A}=Cu, Pd and Ag. Eventually, the effect of applying an external magnetic field is studied. A particularly interesting feature specific for CuCrO$_{2}$ is a satellite peak which appears at lower temperatures. It is presumably related to a deformation of the lattice and therefore going to be discussed in further detail. N2 - Mit der Entdeckung des Riesenmagnetoelektischen Effekts (Giant Magnetoelectric Effect) in TbMnO$_{3}$ durch Kimura et al., im Jahre 2003, erlebte das Forschungsgebiet der multiferroischen Seltenerdmanganate RMnO$_{3}$ einen neuen Aufschwung durch die neuen Möglichkeiten, die sich durch diese Entdeckung offenbarten. \cite{Kimura2003} Der Effekt besteht darin, dass sich durch ein bestimmtes Muster der magnetischen Ordnung eine direkt an dieses Muster gekoppelte ferroelektrische Polarisation ergibt. Die Kopplung von magnetischer und ferroelektrischer Ordnung bewirkt, dass stets beide Parameter simultan beeinflusst werden, wenn ein externes elektrisches oder magnetisches Feld angelegt wird: Wird das Magnetisierungsmuster durch ein externes Magnetfeld beeinflusst, wirkt sich dies direkt auf die elektrische Polarisation aus. Umgekehrt, wenn die Polarisation durch ein elektrisches Feld beeinflusst wird, ist die magnetische Ordnung entsprechend betroffen. Dies erlaubt die vollständige Umordnung der elektrischen Polarisation durch ein magnetisches Feld oder der magnetischen Ordnung durch ein elektrisches Feld. Materialien, die mindestens zwei ferroische Eigenschaften, in diesem Fall eine spontane Magnetisierung und spontane elektrische Polarisation, in der gleichen Phase aufweisen, werden als Multiferroika bezeichnet. Diese allgemeine Klassifikation ist noch zu unterteilen in Typ-I und Typ-II Multiferroika. Zu Typ-I Multiferroika zählen Systeme wie BiFeO$_{3}$, bei denen die ferroelektrische und die magnetische Ordnung weitestgehend unabhängig voneinander und daher bei verschiedenen Temperaturen einsetzen ($T_{C} = 1100$~K für die ferroelektrische, $T_{N}=$ 643~K für die magnetische Ordnung \cite{Khomskii2009}). Dementsprechend sind Magnetisierung und Polarisation in diesem System kaum miteinander gekoppelt. Demgegenüber stehen die hier betrachteten Systeme der orthorhombischen RMnO$_{3}$ Seltenerdmanganate und der ACrO$_{2}$ Delafossite, die der Gruppe der Typ-II Multiferroika angehören. Hier ist die magnetische Ordnung die direkte Ursache der ferroelektrischen Polarisation, d.h. beide Phänomene treten simultan ab der gleichen Ordnungstemperatur auf. Das Ziel von Forschungsbemühungen auf diesem Gebiet der Multiferroika ist zum Einen, neue Materialien zu finden, die solcherlei Kopplungseffekte zeigen. Zum Anderen gilt es, den Effekt besser nutzbar zu machen, sei es durch eine größere Kopplungsstärke oder durch höhere mögliche Ordnungstemperaturen. Um dies zu erreichen ist es von essentieller Bedeutung die zu Grunde liegenden mikroskopischen Mechanismen zu ergründen, diese zu studieren und schließlich ein besseres Verständnis der multiferroischen Kopplungsmechanismen zu erlangen. In dieser Dissertation liegt der Fokus auf der systematischen Untersuchung von Kopplungseffekten zwischen der magnetischen Ordnung und der Dynamik des Kristallgitters mittels Ramanspektroskopie. Insbesondere werden Renormalisierungseffekte der Frequenzen der Gitterschwingungen untersucht, die sich durch die Ausbildung der magnetischen Ordnung und Kopplung derselben an die Gitterdynamik ergeben, die sogenannte Spin-Phonon Kopplung (SPC). Zu diesem Zweck werden die spektroskopischen Experimente mit Augenmerk auf die Polarisations-, Temperatur- und Magnetfeldabhängigkeit der ramanaktiven Moden durchgeführt. Dabei werden Serien von Proben zweier Materialsysteme untersucht, bei denen sich die multiferroische Phase durch unterschiedliche Mechanismen ausbildet: Zum Einen das System Eu$_{1-x}$Ho$_{x}$MnO$_{3}$ ( $0 \le x \le 0.5$), welches zu den orthorhombischen RMnO$_{3}$ Systemen zählt und sowohl multiferroische als auch nicht-multiferroische Proben umfasst. Hierbei beruht der magnetoelektrische Effekt auf der inversen Dzyaloshinskii-Moriya Wechselwirkung. Im Vergleich dazu wird außerdem das System der ACrO$_{2}$ Delafossite mit A= Cu, Ag, Pd untersucht. Dieses System ist im Kontext der Multiferroika noch als relativ neu anzusehen. Hier kann die inverse Dzyaloshinskii-Moriya Wechselwirkung aus Symmetriegründen ausgeschlossen werden, sodass ein neuartiger magnetoelektrischer Kopplungsmechanismus vorliegt. Durch die Spin-Bahn Kopplung verschiebt sich die Gewichtung der Ladungsverteilung der Bindungen und führt dadurch zur Entstehung der elektrischen Polarisation. Im Vergleich der beiden Systeme, werden die Unterschiede der Spin-Phonon Kopplungsstärken und der Einfluss von lokalen Ordnungseffekten diskutiert. KW - Festkörperphysik KW - Gitterdynamik KW - Raman-Spektroskopie KW - Magnon KW - Optik KW - Spin-Phonon Kopplung KW - Elektromagnon KW - Multiferroika KW - Multiferroics KW - Electromagnon KW - Spin-phonon coupling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179719 ER - TY - JOUR A1 - Becker, Charles R. A1 - Martin, T. P. T1 - Infrared absorption by Impurity-pair resonant modes in NaCl:F N2 - New resonant-mode infrared absorption lines have been observed in NaCl with high concentrations of fluorine impurities. The quadratic concentration dependence of the strength of these lines indicates that they are due to pairs of fluorine impurities. At the resonant frequencies, the motion of some host ions appears to be as important as the motion of the impurities themselves. KW - Festkörperphysik Y1 - 1972 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37840 SN - 1098-0121 ER - TY - THES A1 - Thienel, Cornelius T1 - Exploring the transport properties of the three-dimensional topological insulator material HgTe T1 - Erkundung der Transporteigenschaften des dreidimensionalen Topologischen Isolators HgTe N2 - In der vorliegenden Dissertation werden die Transporteigenschaften von verspannten HgTe-Volumenkristallen untersucht. Verspanntes HgTe stellt einen dreidimensionalen topologischen Isolator dar und ist zur Erkundung von topologischen Oberflächenzuständen von speziellem Interesse, da es mit Hilfe von Molekularstrahlepitaxie in hoher Kristallqualität gewachsen werden kann. Die niedrige Defektdichte führt zu beachtlichen Ladungsträgerbeweglichkeiten, die deutlich über denen anderer topologischer Isolatoren liegen. Verspanntes HgTe hat jedoch eine kleine Energielücke von ca. 20 meV. Deshalb ist es für eine mögliche Verwendung des Materials ein wichtiger Aspekt, in welchem Parameterbereich Oberflächentransport stattfindet. Um dieser Frage nachzugehen, werden die HgTe-Proben bei tiefen Temperaturen (T < 100 mK) und unter dem Einfluss hoher Magnetfelder in verschiedenen Orientierungen untersucht. Der Einfluss von Gate-Elektroden ober- und unterhalb der Struktur sowie von Deckschichten, die die Oberflächen schützen, wird diskutiert. Basierend auf einer Analyse des Quanten-Hall-Effekts wird gezeigt, dass der Transport in diesem Material von topologischen Oberflächenzuständen dominiert ist. Die Abhängigkeit der topologischen Oberflächenzustände von der Gate-Spannung wird dargestellt. Durch diese Abhängigkeit ist es zum ersten Mal möglich, eine ungerade ganzzahlige Quanten-Hall-Plateau Sequenz nachzuweisen, die von den Oberflächen senkrecht zum Magnetfeld stammt. Des Weiteren wird im Rahmen dieser Arbeit in Proben hoher Oberflächenqualität zum ersten Mal für einen 3D TI der p-Typ QHE der Oberflächenzustände beobachtet. Aus der Gate-Abhängigkeit der Messungen wird geschlossen, dass das Abschirmverhalten in 3D TIs nicht trivial ist. Die Transportdaten werden mit Hilfe von intuitiven theoretischen Modellen auf qualitative Weise analysiert. N2 - In the present thesis the transport properties of strained bulk HgTe devices are investigated. Strained HgTe forms a 3D TI and is of special interest for studying topological surface states, since it can be grown by MBE in high crystal quality. The low defect density leads to considerable mobility values, well above the mobilities of other TI materials. However, strained HgTe has a small band gap of ca. 20 meV. With respect to possible applications the question is important, under which conditions the surface transport occurs. To answer this question, the HgTe devices are investigated at dilution refrigerator temperatures (T<100 mK) in high magnetic fields of different orientation. The influence of top and back gate electrodes as well as surface protecting layers is discussed. On the basis of an analysis of the quantum Hall behaviour it is shown that transport is dominated by the topological surface states in a surprisingly large parameter range. A dependence on the applied top gate voltage is presented for the topological surface states. It enables the first demonstration of an odd integer QHE sequence from the surfaces perpendicular to the magnetic field. Furthermore, the p-type QHE from the surface states is observed for the first time in any 3D TI. This is achieved in samples of high surface quality. It is concluded from the gate response that the screening behaviour in 3D TI devices is non-trivial. The transport data are qualitatively analysed by means of intuitive theoretical models. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronischer Transport KW - 3D topological insulator KW - Festkörperphysik KW - Hochmagnetfeld KW - Tieftemperatur KW - Quanten-Hall-Effekt Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122031 ER - TY - THES A1 - Hüwe, Florian T1 - Electrothermal Investigation on Charge and Heat Transport in the Low-Dimensional Organic Conductor (DCNQI)\(_2\)Cu T1 - Elektrothermische Untersuchung des Ladungs- und Wärmetransports an dem niederdimensionalen organischen Leiter (DCNQI)\(_2\)Cu N2 - This thesis aimed at the coherent investigation of the electrical and thermal transport properties of the low-dimensional organic conductor (DCNQI)2M (DCNQI: dicyanoquinonediimine; M: metallic counterion). These radical anion salts present a promising, new material class for thermoelectric applications and hence, a consistent characterization of the key parameters is required to evaluate and to optimize their performance. For this purpose, a novel experimental measurement setup enabling the determination of the electrical conductivity, the Seebeck coefficient and the thermal conductivity on a single crystalline specimen has been designed and implemented in this work. The novel measurement setup brought to operation within this thesis enabled a thorough investigation of the thermal transport properties in the (DCNQI)2M system. The thermal conductivity of (DCNQI-h8)2Cu at RT was determined to κ=1.73 W m^(-1) K^(-1). By reducing of the copper content in isostructural, crystalline (DMe-DCNQI)2CuxLi1-x alloys, the electrical conductivity has been lowered by one order of magnitude and the correlated changes in the thermal conductivity allowed for a verification of the Wiedemann-Franz (WF) law at RT. A room temperature Lorenz number of L=(2.48±0.45)⋅〖10〗^(-8) WΩK^(-2) was obtained in agreement with the standard Lorenz number L_0=2,44⋅〖10〗^(-8) WΩK^(-2) for 3D bulk metals. This value appears to be significantly reduced upon cooling below RT, even far above the Debye temperature of θ_D≈82 K, below which a breakdown of the WF law is caused by different relaxation times in response to thermal and to electric field perturbations. The experimental data enabled the first consistent evaluation of the thermoelectric performance of (DCNQI)$_2$Cu. The RT power factor of 110 μWm^(-1) K^(-2) is comparable to values obtained on PEDOT-based thermoelectric polymers. The RT figure of merit amounts to zT=0.02 which falls short by a factor of ten compared to the best values of zT=0.42 claimed for conducting polymers. It originates from the larger thermal conductivity in the organic crystals of about 1.73 W m^(-1) K^(-1) in (DCNQI)2Cu. Yet, more elaborate studies on the anisotropy of the thermal conductivity in PEDOT polymers assume their figure of merit to be zT=0.15 at most, recently. Therefore, (DCNQI)2Cu can be regarded as thermoelectric material of similar performance to polymer-based ones. Moreover, it represents one of the best organic n-type thermoelectric materials to date and as such, may also become important in hybrid thermoelectrics in combination with conducting polymers. Upon cooling below room temperature, (DCNQI)2Cu reveals its full potential attaining power factors of 50 mW K^(-2) m^(-1) and exceeding values of zT>0.15 below 40 K. These values represent the best thermoelectric performance in this low-temperature regime for organic as well as inorganic compounds and thus, low-dimensional organic conductors might pave the way toward new applications in cryogenic thermoelectrics. Further improvements may be expected from optimizing the charge carrier concentration by taking control over the CT process via the counterion stack of the crystal lattice. The concept has also been demonstrated in this work. Moreover, the thermoelectric performance in the vicinity of the CDW transition in (MeBr-DCNQI)2Cu was found to be increased by a factor of 5. Accordingly, the diversity of electronic ground states accessible in organic conductors provides scope for further improvements. Finally, the prototype of an all-organic thermoelectric generator has been built in combination with the p-type organic metal TTT2I3. While it only converts about 0.02% of the provided heat into electrical energy, the specific power output per active area attains values of up to 5 mW cm^(-2). This power output, defining the cost-limiting factor in the recovery of waste heat, is three orders of magnitude larger than in conducting polymer devices and as such, unrivaled in organic thermoelectrics. While the thermoelectric key parameters of (DCNQI)2Cu still lack behind conventional thermoelectrics made of e.g. Bi2Te3, the promising performance together with its potential for improvements make this novel material class an interesting candidate for further exploration. Particularly, the low-cost and energy-efficient synthesis routes of organic materials highlight their relevance for technological applications. N2 - Ziel der vorliegenden Arbeit war die umfassende Untersuchung der elektrischen und thermischen Transportgrößen von quasi-eindimensionalen, leitfähigen Radikalanionensalzen basierend auf dem Dicyanochinondiimin-Molekül (DCNQI). Diese kristallinen (DCNQI)2M (M: Metallion) Verbindungen stellen eine vielversprechende, neuartige Materialklasse für thermoelektrische Anwendungen dar, weshalb eine konsistente Charakterisierung der thermoelektrischen Kenngrößen von großem wissenschaftlichen Interesse ist. Dafür wurde in dieser Arbeit ein neuer experimenteller Aufbau entwickelt und in Betrieb genommen, der die Messung der elektrischen und thermischen Leitfähigkeit sowie des Seebeck-Koeffizienten an einer einzigen Kristallprobe ermöglicht. Der neu etablierte Messaufbau ermöglichte eine grundlegende Untersuchung der Wärmeleitfähigkeit in der (DCNQI)2M Materialklasse, wobei für (DCNQI-h8)2Cu Cu ein Raumtemperaturwert von to κ=1.73 W m^(-1) K^(-1) ermittelt werden konnte. Durch eine Variation des Kupferanteils in (DMe-DCNQI)2CuxLi1-x Mischkristallen konnte die elektrische Leitfähigkeit über eine Größenordnung variiert und die korrelierten Änderungen der Wärmeleitfähigkeit studiert werden. Dies erlaubte eine Bestätigung des Wiedemann-Franz (WF) Gesetzes bei RT mit einer Lorenzzahl von of L=(2.48±0.45)⋅〖10〗^(-8) WΩK^(-2), welche im Rahmen des Fehlers der nach dem Sommerfeld-Modell erwarteten Lorenzzahl von L_0=2,44⋅〖10〗^(-8) WΩK^(-2) für dreidimensionale Metalle entspricht. Unterhalb von RT ist das Wiedemann-Franz Gesetz in seiner etablierten Form jedoch nicht mehr erfüllt und unterschiedliche Relaxationszeiten für thermische und elektrische Störungen der elektronischen Fermi-Verteilung treten bereits weit oberhalb der Debye Temperatur von θ_D≈82 K auf. Die in dieser Arbeit gewonnenen, experimentellen Daten erlauben zum ersten Mal eine konsistente Evaluierung der thermoelektrischen Kenngrößen von (DCNQI)2Cu Radikalanionensalzen. Ein thermoelektrischer Leistungsfaktor von 110 μWm^(-1) K^(-2) konnte bei RT nachgewiesen werden, welcher vergleichbar mit den zur Zeit besten organischen Thermoelektrika basierend auf dem lochleitenden Polymer PEDOT ist. Die thermoelektrische Gütezahl erreicht bei RT einen Wert von zT=0.02, welcher aufgrund der höheren Wärmeleitfähigkeit von 1.73 W m^(-1) K^(-1) in (DCNQI)2Cu etwa eine Größenordnung schlechter ist als die höchste, publizierte Gütezahl für PEDOT:PSS. Literaturwerte für leitfähige Polymere sind jedoch häufig aufgrund der Anisotropie der Transportgrößen überschätzt, wenn die thermoelektrischen Kenngrößen nicht in einer einheitlichen Probenrichtung gemessen werden. Daher kann die thermoelektrische Leistungsfähigkeit von (DCNQI)2Cu zumindest als vergleichbar betrachtet werden. Hinzu kommt, dass (DCNQI)2Cu eines der besten organischen Thermoelektrika mit negativen Majoritätsladungsträgern ist und deshalb für thermoelektrische Hybridgeneratoren in Kombination mit lochleitenden Polymeren Bedeutung besitzt. Unterhalb von Raumtemperatur zeigen (DCNQI)2Cu Kristalle ihr großes thermoelektrisches Anwendungspotential mit Leistungsfaktoren von bis zu 50 mW K^(-2) m^(-1) und Gütezahlen größer als zT>0.15 unterhalb von 40 K. Nach aktuellem Kenntnisstand stellen diese Werte einen Rekord im Niedrigtemperaturbereich dar, sodass niederdimensionale organische Metalle hier neue thermoelektrische Anwendungsfelder bei kryogenen Temperaturen erschließen könnten. Eine weitere Optimierung der thermoelektrischen Kenngrößen sollte durch gezielte Einstellung der Ladungsträgerdichte erreicht werden können, beispielsweise durch die Kontrolle des Ladungstransfers von den Gegenionen auf das organische Molekül. Die Gültigkeit dieses Konzepts wurde in der vorliegenden Arbeit ebenfalls demonstriert. Zusätzlich konnte eine Verfünffachung der thermoelektrischen Gütezahl in der Nähe des Peierls-Phasenübergangs von (MeBr-DCNQI)2Cu gezeigt werden. Die diversen elektronischen Grundzustände in organischen Metallen stellen daher einen weiteren Ansatz zur Verbesserung der thermoelektrischen Leistungsfähigkeit dieser Materialklasse dar. Abschließend wurde ein Prototyp eines organischen, thermoelektrischen Generators aus einer Kombination von elektronenleitendem, einkristallinen (DCNQI)2Cu und dem niederdimensionalen, lochleitenden, organischen Metall TTT2I3 hergestellt. Obwohl der aktuelle, nicht-optimierte Generator nur 0.02% der eingespeisten Wärme in elektrische Energie umwandeln konnte, erreichte seine auf die aktive Fläche normierte Leistung bereits Werte von 5 mW cm^(-2). Diese übertreffen die Kenndaten vergleichbarer thermoelektrischer Generatoren basierend auf leitfähigen Polymeren um drei Größenordnungen, wobei zu beachten ist, dass dieser Parameter einen großen Teil der Kosten in der thermoelektrischen Abwärmenutzung bestimmt. Trotz der noch nicht erreichten Leistungsmerkmale von konventionellen thermoelektrischen Generatoren basierend auf Bi2Te3 verdeutlichen die Ergebnisse für (DCNQI)2Cu dennoch das hohe Potential organischer Metalle für die thermoelektrische Materialforschung, besonders unter Berücksichtigung der kostengünstigen und weniger energieintensiven Herstellung dieser Materialien in Hinblick auf technologische Anwendungen. KW - Radikalanionensalz KW - Thermoelektrischer Effekt KW - Niederdimensionales System KW - Low-dimensional molecular metals KW - quasi-one-dimensional organic metals KW - Wiedemann Franz law KW - thermoelectric generator KW - Waste Heat Recovery KW - Quasi-eindimensionale Organische Metalle KW - Wiedemann-Franz-Gesetz KW - Niederdimensionale Molekulare Metalle KW - Thermoelektrischer Generator KW - Abwärmenutzung KW - Wärmeleitung KW - Organik KW - Festkörperphysik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153492 ER - TY - THES A1 - Schütz, Philipp T1 - Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO\(_3\) T1 - Dimensionalitätsgetriebener Metal-Isolator-Übergang in Spin-Bahn-gekoppeltem SrIrO\(_3\) N2 - In the past decades correlated-electron physics due to strong Coulomb interactions and topological physics caused by band inversion often induced by strong spin-orbit coupling have been the workhorses of solid state research. While commonly considered as disparate phenomena, it was realized in the early 2010s that the interplay between the comparably strong Coulomb and spin-orbit interactions in the $5d$ transition metal oxides may result in hitherto unforeseen properties. The layered perovskite Sr$\textsubscript{2}$IrO$\textsubscript{4}$ has attracted special attention due to the observation of an unconventional Mott-insulating phase and predictions of exotic superconductivity. Less is known about its three-dimensional counterpart SrIrO$\textsubscript{3}$, since rather than the cubic perovskite structure it adopts the thermodynamically stable hexagonal polymorph thereof. This thesis therefore sets out to establish the synthesis of epitaxially stabilized perovskite SrIrO$\textsubscript{3}$ by pulsed laser deposition and to investigate its electronic and magnetic structure by state-of-the-art x-ray spectroscopy techniques. In this endeavor the appropriate thermodynamic conditions for the growth of high-quality SrIrO$\textsubscript{3}$ are identified with a focus on the prevention of cation off-stoichiometry and the sustainment of layer-by-layer growth. In the thus-optimized films the cubic perovskite symmetry is broken by a tetragonal distortion due to epitaxial strain and additional cooperative rotations of the IrO$\textsubscript{6}$ octahedra. As a consequence of the thermodynamic instability of the IrO$\textsubscript{2}$ surface layer, the films unexpectedly undergo a conversion to a SrO termination during growth. In an attempt to disentangle the interplay between spin-orbit and Coulomb interaction the three-dimensional electronic structure of perovskite SrIrO$\textsubscript{3}$ is investigated in a combined experimental and theoretical approach using soft x-ray angle-resolved photoelectron spectroscopy and \textit{ab initio} density functional theory calculations. The experimentally found metallic ground state hosts coherent quasiparticle peaks with a well-defined Fermi surface and is theoretically described by a single half-filled band with effective total angular momentum $J_\text{eff} = 1/2$ only upon incorporation of a sizeable local Coulomb repulsion and -- to a lesser extent -- the broken cubic crystal symmetry in the film. Upon reduction of the SrIrO$\textsubscript{3}$ thickness below a threshold of four unit cells the scales are tipped in favor of a Mott-insulating phase as the on-site Coulomb repulsion surmounts the diminishing kinetic energy upon transition into the two-dimensional regime. Concomitantly, a structural transition occurs because the corner-shared octahedral network between substrate and film imposes constraints upon the IrO$\textsubscript{6}$ octahedral rotations in the thin-film limit. The striking similarity between the quasi-two-dimensional spin-orbit-induced Mott insulator Sr$\textsubscript{2}$IrO$\textsubscript{4}$ and SrO-terminated SrIrO$\textsubscript{3}$ in the monolayer limit underlines the importance of dimensionality for the metal-insulator transition and possibly opens a new avenue towards the realization of exotic superconductivity in iridate compounds. Whether the analogy between SrIrO$\textsubscript{3}$ in the two-dimensional limit and its Ruddlesden-Popper bulk counterparts extends to their complex magnetic properties ultimately remains an open question, although no indications for a remanent (anti)ferromagnetic order were found. The unprecedented observation of an x-ray magnetic circular dichroism at the O~$K$-absorption edge of iridium oxides in an external magnetic field promises deeper insights into the intricate connection between the $J_\text{eff} = 1/2$ pseudospin state, its hybridization with the oxygen ligand states and the magnetic order found in the Ruddlesden-Popper iridates. N2 - In den vergangenen Jahrzehnten waren die Physik korrelierter Elektronen aufgrund starker Coulomb- sowie topologische Physik aufgrund durch Spin-Bahn-Wechselwirkung induzierter Bandinversion die Zugpferde der Festkörperforschung. Während diese zuvor gemeinhin als disjunkt wahrgenommen wurden, setzte sich Anfang der 2010er Jahre die Einsicht durch, dass das Zusammenspiel der ähnlich starken Coulomb- und Spin-Bahn-Wechselwirkung in $5d$ Übergangsmetalloxiden zu unvorhergesehenen Eigenschaften führen kann. Bedingt durch die Entdeckung einer unkonventionellen Mott-isolierenden Phase sowie Vorhersagen exotischer Supraleitung wurde dem geschichteten Perowskit Sr$\textsubscript{2}$IrO$\textsubscript{4}$ besondere Aufmerksamkeit zuteil. Über dessen dreidimensionales Pendant SrIrO$\textsubscript{3}$ ist weniger bekannt, da es anstelle der kubischen Perowskitstruktur eine thermodynamisch stabilere polymorphe Gitterstruktur annimmt. Ziel dieser Thesis ist daher die Synthese von epitaktisch stabilisiertem Perowskit-SrIrO$\textsubscript{3}$ mittels gepulster Laserablation sowie die Untersuchung dessen elektronischer und magnetischer Struktur mit modernsten Röntgenspektroskopiemethoden. In diesem Bestreben werden zunächst die thermodynamischen Bedingungen für das Wachstum von qualitativ hochwertigem SrIrO$\textsubscript{3}$ mit dem Fokus auf der kationischen Stöchiometrie sowie dem Erreichen lagenweisen Schichtwachstums identifiziert. In derart optimierten Filmen wird die kubische Symmetrie von einer tetragonalen Verzerrung aufgrund epitaktischer Verspannung sowie von kooperativen Verdrehungen der IrO$\textsubscript{6}$ Oktaeder gebrochen. Während des Wachstums findet infolge der thermodynamischen Instabilität der obersten IrO$\textsubscript{2}$ Lage eine Umwandlung zu einer SrO-Terminierung der Oberfläche statt. Mit dem Ziel das Zusammenspiel von Spin-Bahn- und Coulomb-Wechselwirkung in SrIrO$\textsubscript{3}$ zu entwirren wird dessen dreidimensionale elektronische Struktur in Kombination von winkelaufgelöster Photoelektronenspektroskopie im weichen Röntgenbereich und \textit{ab initio} Dichtefunktionaltheorie untersucht. Der experimentell beobachtete metallische Grundzustand weist kohärente Quasiteilchenzustände mit wohldefinierter Fermifläche auf und wird theoretisch durch ein halbgefülltes Band mit effektivem Gesamtdrehmoment $J_\text{eff} =1/2$ beschrieben, sofern eine substanzielle lokale Coulombabstoßung sowie - in geringerem Maße - die gebrochene kubische Symmetrie berücksichtigt werden. Bei Schichtdicken unterhalb von vier Einheitszellen neigt sich das Gleichgewicht zugunsten einer Mott-isolierenden Phase, da die lokale Coulombabstoßung die im Zweidimensionalen reduzierte kinetische Energie zunehmend überwiegt. Gleichzeitig findet ein struktureller Übergang statt, da das Netzwerk aus Sauerstoffoktaedern deren Rotationen in dünnen Filmen Randbedingungen auferlegt. Die verblüffende Ähnlichkeit zwischen dem quasi-zweidimensionalen Mott-Isolator Sr$\textsubscript{2}$IrO$\textsubscript{4}$ und SrO-terminiertem Monolagen-SrIrO$\textsubscript{3}$ unterstreicht die Bedeutung der Dimensionalität für den Metall-Isolator-Übergang und eröffnet neue Möglichkeiten zur Realisierung exotischer Supraleitung in Iridaten. Die Frage, ob sich die Analogie zwischen SrIrO$\textsubscript{3}$ im zweidimensionalen Limes und den quasi-zweidimensionalen Ruddlesden-Popper-Iridaten auf deren komplexe magnetische Eigenschaften erstreckt, bleibt schlussendlich offen, gleichwohl keine Hinweise auf eine remanente (anti-)ferromagnetische Ordnung hindeuten. Die bisher erste Beobachtung eines magnetischen Zirkulardichroismus an der O~$K$-Absorptionskante eines Iridiumoxids in einem externen Magnetfeld verspricht tiefere Einsichten in den komplexen Zusammenhang zwischen dem $J_\text{eff} = 1/2$ Pseudospin-Zustand, dessen Hybridisierung mit den Valenzzuständen der Sauerstoffliganden sowie der magnetischen Ordnung in Iridatverbindungen. KW - Festkörperphysik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212781 ER - TY - JOUR A1 - Wu, Y.S. A1 - Becker, Charles R. A1 - Waag, A. A1 - Kraus, M. M. A1 - Bicknell-Tassius, R. N. A1 - Landwehr, G. T1 - Correlation of the Cd-to-Te ratio on CdTe surfaces with the surface structure N2 - We report here that reconstruction on (100), (1lIlA, and (1l1lB CdTe surfaces is either C(2X2), (2X2), and (l X I) or (2X I), (l X I), and (l X I) when they are Cd or Te stabilized, respectively. There is a mixed region between Cd and Te stabilization in which the reflected high-energy electron-diffraction (RHEED) patterns contain characteristics of both Cd- and Te-stabilized surfaces. We have also found that the Cd-to-Te ratio of the x-ray photoelectron intensities of their 3d\(_{3/ 2}\) core levels is about 20% larger for a Cd-stabilized (1lIlA, (1lIlB, or (100) CdTe surface than for a Te-stabilized one. According to a simple model calculation, which was normalized by means of the photoelectron intensity ratio of a Cd-stabilized (lll)A and aTe-stabilized (1l1lB CdTe surface, the experimental data for CdTe surfaces can be explained by a linear dependence of the photoelectron-intensity ratio on the fraction of Cd in the uppermost monatomic layer. This surface composition can be correlated with the surface structure, i.e., the corresponding RHEED patterns. This correlation can in turn be employed to determine Te and Cd evaporation rates. The Te reevaporation rate is increasingly slower for the Te-stabilized (Ill) A, (l1l)B, and (100) surfaces, while the opposite is true for Cd from Cd-stabilized (Ill) A and (Ill)B surfaces. In addition, Te is much more easily evaporated from all the investigated surfaces than is Cd, if the substrate is kept at normal molecular-beam-epitaxy growth temperatures ranging from 2oo·C to 300 ·C. KW - Festkörperphysik Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37789 SN - 0163-1829 ER -