TY - JOUR A1 - Wetzel, Andrea A1 - Jablonka, Sibylle A1 - Blum, Robert T1 - Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel JF - Channels (Austin) N2 - Spontaneous electrical activity preceding synapse formation contributes to the precise regulation of neuronal development. Examining the origins of spontaneous activity revealed roles for neurotransmitters that depolarize neurons and activate ion channels. Recently, we identified a new molecular mechanism underlying fluctuations in spontaneous neuronal excitability. We found that embryonic motoneurons with a genetic loss of the low-threshold sodium channel Na\(_V\)1.9 show fewer fluctuations in intracellular calcium in axonal compartments and growth cones than wild-type littermates. As a consequence, axon growth of Na\(_V\)1.9-deficient motoneurons in cell culture is drastically reduced while dendritic growth and cell survival are not affected. Interestingly, Na\(_V\)1.9 function is observed under conditions that would hardly allow a ligand- or neurotransmitter-dependent depolarization. Thus, Na\(_V\)1.9 may serve as a cell-autonomous trigger for neuronal excitation. In this addendum, we discuss a model for the interplay between cell-autonomous local neuronal activity and local cytoskeleton dynamics in growth cone function. KW - spontaneous excitation KW - spinal muscular atrophy KW - axon growth KW - sodium channel KW - motoneurons KW - local protein synthesis KW - NaV1.9 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132586 VL - 7 IS - 1 ER - TY - THES A1 - Subramanian, Narayan T1 - Role of NaV1.9 in activity dependent axon growth in embryonic cultured motoneurons T1 - Die Rolle der NaV1.9 in Aktivität abhängig Axonwachstum in embryonalen kultivierten Motoneuronen N2 - Spontaneous neural activity has been shown to regulate crucial events in neurite growth including axonal branching and path finding. In animal models of spinal muscular atrophy (SMA) cultured embryonic mouse motoneurons show distinct defect in axon elongation and neural activity. This defect is governed by abnormal clustering of Ca2+ channels in the axonal regions and the protruding growth cone area. The mechanisms that regulate the opening of calcium channels in developing motoneurons are not yet clear. The question was addressed by blocking neural activity in embryonic cultured motoneurons by pharmacological inhibition of voltage-gated sodium channels (VGSC) by saxitoxin (STX) and tetrodotoxin (TTX). Low dosages of STX resulted in significant reduction of axon growth and neural activity in cultured motoneurons. This pharmacological treatment did not affect survival of motoneurons in comparison to control motoneurons that was grown in the presence of survival neurotrophic factors BDNF and CNTF. It was also found that STX was 10 times more potent than TTX a common inhibitor of VGSC with a reduced activity on the TTX-insensitive sodium channels NaV1.5, NaV1.8 and NaV1.9. Reverse Transcriptase-PCR experiments revealed the presence of NaV1.9 as the likely candidate that begins to express from embryonic stage sixteen in the mouse spinal cord. Immunolabelling experiments showed that the channel is expressed in the axonal compartments and axonal growth cones in cultured motoneurons. Suppression of NaV1.9 in cultured motoneurons by lentivirus mediated short hairpin-RNA (shRNA) resulted in shorter axon length in comparison with uninfected and scrambled constructs. Further, embryonic motoneurons cultured from NaV1.9 knockout mice also showed a significant reduction in neural activity and axon growth. The findings of this work highlight the role of NaV1.9 as an important contender in regulating activity dependent axon growth in embryonic cultured motoneurons. NaV1.9 could therefore be considered as a prospective molecule that could play an important role in regulating axon growth in motoneuron disease models like spinal muscular atrophy (SMA). N2 - Spontane neuronale Aktivität reguliert essentielle Ereignisse im Neuritenwachstum, wie beispielsweise die axonale Verzweigung und die Erkennung des Wachstumspfades. Motoneurone, die aus Tiermodellen der Spinalen Muskelatrophie (SMA) gewonnen werden, zeigen einen auffälligen Defekt im Streckenwachstum von Axonen und in der neuronalen Aktivität. Dieser Defekt wird von anormaler Clusterbildung von Ca2+ Kanälen in axonalen Regionen und in Wachstumskegeln begleitet. Die Mechanismen, die das Öffnen von Kalziumkanälen in embryonalen Motoneuronen in der Entwicklung regulieren, und die für das aktivitätsabhängige Axonwachstum benötigt werden, sind nicht bekannt. Diese Frage wurde in dieser Studie bearbeitet, indem neuronale Aktivität in embryonalen Motoneuronen durch pharmakologische Inhibition von spannungsabhängigen Natriumkanälen durch Saxitoxin (STX) und Tetrodotoxin blockiert wurde. Geringe Dosen von Saxitoxin bewirkten eine deutliche Reduktion des Axonwachstums und der neuronalen Aktivität in kultivierten Motoneuronen. Diese pharmakologische Behandlung beeinflusste nicht das Überleben von Motoneuronen im Vergleich zu Kontroll-Motoneuronen, die in der Anwesenheit der neurotrophen Faktoren BDNF und CNTF kultiviert wurden. Saxitoxin war etwa 5-10-mal potenter als TTX, ein üblicher Blocker spannungsabhängiger Natriumkanäle mit einer verminderte Aktivität auf die TTX-insensitiven Natriumkanäle NaV1.5, NaV1.8, und NaV1.9. Reverse-Transkriptase-PCR Experimente bestätigten die Anwesenheit von NaV1.9 am Tag E16 (embryonaler Tag 16) im Rückenmark der Maus. NaV1.9 ist ein einzigartiger Typus von einem Natriumkanal welcher in der Lage ist neuronale Erregbarkeit in der Nähe des Ruhemembranpotentials zu steuern. Deshalb war NaV1.9 ein guter Kandidat für einen Kanal, der spontane Erregung in Motoneuronen vermittelt. Immunofärbungen zeigten, dass NaV1.9 in axonalen Kompartimenten und axonalen Wachstumskegeln von kultivierten Motoneuronen exprimiert ist. Die Unterdrückung von NaV1.9 in kultivierten Motoneuronen durch lentiviralexprimierte short hairpin-RNA (shRNA) resultierte in kürzerer Axonlänge, im Vergleich zu nicht-infizierten Motoneuronen oder Motoneuronen, die eine sinnlose Kontroll-shRNA Sequenz exprimierten. Embryonale, kultivierte Motoneurone von NaV1.9 knockout Mäusen zeigten eine signifikante Verringerung der neuronalen Aktivität und verkürzte Axone. Diese Ergebnisse weisen auf eine Bedeutung von NaV1.9 im aktivitätsabhängigen Axonwachstum hin KW - Axon KW - Embryonalentwicklung KW - Motoneuron KW - Natriumkanal KW - Motoneuronen KW - NaV1.9 KW - motoneuron KW - Nav1.9 KW - axon growth Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57536 ER -