TY - JOUR A1 - Laqua, Fabian Christopher A1 - Woznicki, Piotr A1 - Bley, Thorsten A. A1 - Schöneck, Mirjam A1 - Rinneburger, Miriam A1 - Weisthoff, Mathilda A1 - Schmidt, Matthias A1 - Persigehl, Thorsten A1 - Iuga, Andra-Iza A1 - Baeßler, Bettina T1 - Transfer-learning deep radiomics and hand-crafted radiomics for classifying lymph nodes from contrast-enhanced computed tomography in lung cancer JF - Cancers N2 - Objectives: Positron emission tomography (PET) is currently considered the non-invasive reference standard for lymph node (N-)staging in lung cancer. However, not all patients can undergo this diagnostic procedure due to high costs, limited availability, and additional radiation exposure. The purpose of this study was to predict the PET result from traditional contrast-enhanced computed tomography (CT) and to test different feature extraction strategies. Methods: In this study, 100 lung cancer patients underwent a contrast-enhanced \(^{18}\)F-fluorodeoxyglucose (FDG) PET/CT scan between August 2012 and December 2019. We trained machine learning models to predict FDG uptake in the subsequent PET scan. Model inputs were composed of (i) traditional “hand-crafted” radiomics features from the segmented lymph nodes, (ii) deep features derived from a pretrained EfficientNet-CNN, and (iii) a hybrid approach combining (i) and (ii). Results: In total, 2734 lymph nodes [555 (20.3%) PET-positive] from 100 patients [49% female; mean age 65, SD: 14] with lung cancer (60% adenocarcinoma, 21% plate epithelial carcinoma, 8% small-cell lung cancer) were included in this study. The area under the receiver operating characteristic curve (AUC) ranged from 0.79 to 0.87, and the scaled Brier score (SBS) ranged from 16 to 36%. The random forest model (iii) yielded the best results [AUC 0.871 (0.865–0.878), SBS 35.8 (34.2–37.2)] and had significantly higher model performance than both approaches alone (AUC: p < 0.001, z = 8.8 and z = 22.4; SBS: p < 0.001, z = 11.4 and z = 26.6, against (i) and (ii), respectively). Conclusion: Both traditional radiomics features and transfer-learning deep radiomics features provide relevant and complementary information for non-invasive N-staging in lung cancer. KW - computed tomography KW - computational neural networks KW - lymphatic metastasis KW - carcinoma KW - non-small-cell lung KW - small-cell lung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319231 SN - 2072-6694 VL - 15 IS - 10 ER - TY - JOUR A1 - Werner, R.A. A1 - Schmid, J.S. A1 - Muegge, D.O. A1 - Lückerath, K. A1 - Higuchi, T. A1 - Hänscheid, H. A1 - Grelle, I. A1 - Reiners, C. A1 - Herrmann, K. A1 - Buck, A.K. A1 - Lapa, C. T1 - Prognostic value of serum tumor markers in medullary thyroid cancer patients undergoing vandetanib treatment JF - Medicine N2 - Tyrosine kinase inhibitors (TKIs) such as vandetanib have shown clinical effectiveness in advanced medullary thyroid cancer (MTC). During TKI treatment, fluctuations in the tumor markers carcinoembryonic antigen (CEA) and calcitonin (CTN) are frequently observed. Their role for treatment monitoring and the decision-making process has not been fully elucidated yet. Twenty-one patients (male, 16, female, 5; mean age, 49±13 years) with progressive MTC receiving vandetanib (300mg orally per day) were considered. Tumor restaging was performed every 3 months including contrast-enhanced computed tomography (CT). Response was assessed according to recent criteria (Response Evaluation Criteria in Solid Tumors, RECIST 1.1). Additionally, CEA and CTN were measured at the day of CT imaging and alterations observed in tumor markers were compared to respective imaging findings (partial response, PR; stable disease, SD; progressive disease, PD). During long-term follow-up (510±350 days [range, 97-1140 days]), CTN and CEA levels initially dropped in 71.4% and 61.9% of the patients followed by fluctuations in serum marker levels. A rise in CTN ≥39.5% between 2 subsequent measurements (defined by ROC analysis) had a sensitivity of 70.6% and a specificity of 83.2% in predicting PD with an accuracy of 82.0% (area under the curve (AUC), 0.76). Oscillations in CEA levels were not predictive for PD. Whereas tumor marker fluctuations in MTC patients undergoing TKI treatment are a frequent phenomenon, a significant rise in CTN ≥40% turns out to as an early indicator of tumor progression. KW - follow-up KW - kinase inhibitor KW - carcinoma KW - calcitonin KW - trial KW - medullary thyroid cancer Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145154 VL - 94 IS - 45 ER - TY - JOUR A1 - Ronchi, Cristina L. A1 - Leich, Ellen A1 - Sbiera, Silviu A1 - Weismann, Dirk A1 - Rosenwald, Andreas A1 - Allolio, Bruno A1 - Fassnacht, Martin T1 - Single Nucleotide Polymorphism Microarray Analysis in Cortisol-Secreting Adrenocortical Adenomas Identifies New Candidate Genes and Pathways JF - Neoplasia N2 - The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (>= 20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors. KW - kinase KW - comparative genomic hybridization KW - high-resolution analysis KW - Cushings syndrome KW - neutral loss KW - tumors KW - serum KW - expression KW - carcinoma KW - catenin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134953 VL - 14 IS - 3 ER - TY - JOUR A1 - Schäfer, Simon A1 - Weibel, Stephanie A1 - Donat, Ulrike A1 - Zhang, Quian A1 - Aguilar, Richard J. A1 - Chen, Nanhai G. A1 - Szalay, Aladar A. T1 - Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors JF - BMC Cancer N2 - Background Oncolytic viruses, including vaccinia virus (VACV), are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9)-mediated degradation of proteins of the tumoral extracellular matrix (ECM), leading to increased viral distribution within the tumors. Methods For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD) and the analysis of lymph node metastasis formation. Results GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV, facilitating intra-tumoral viral dissemination, and resulting in accelerated tumor regression. We propose that approaches which enhance the oncolytic effect by increasing the intra-tumoral viral load, may be an effective way to improve therapeutic outcome. KW - microenvironment KW - angiogenesis KW - therapy KW - cancer KW - breast-tumors KW - matrix metalloproteinases KW - adenovirus KW - carcinoma KW - prostate KW - mice Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140800 VL - 12 IS - 366 ER - TY - JOUR A1 - Gholami, Sepideh A1 - Chen, Chun-Hao A1 - Belin, Laurence J. A1 - Lou, Emil A1 - Fujisawa, Sho A1 - Antonacci, Caroline A1 - Carew, Amanda A1 - Chen, Nanhai G. A1 - De Brot, Marina A1 - Zanzonico, Pat B. A1 - Szalay, Aladar A. A1 - Fong, Yuman T1 - Vaccinia virus GLV-1h153 is a novel agent for detection and effective local control of positive surgical margins for breast cancer JF - Breast Cancer Research N2 - Introduction: Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model. Methods: GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 mu Ci of I-124-iodide. Results: Viral infectivity, measured by green fluorescent protein (GFP) expression, was time-and concentrationdependent. All cell lines showed less than 10% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( < 10,000-fold increase from the initial viral dose) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm(3) versus 168 mm(3) in untreated controls (P < 0.05). Conclusions: This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors. KW - conservation KW - carcinoma KW - mastectomy KW - metastases KW - stage-i KW - thyroid-cancer KW - radiation-therapy KW - conserving surgery KW - sodium-iodide symporter Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122140 VL - 15 IS - R26 ER - TY - JOUR A1 - Ehrenschwender, M. A1 - Bittner, S. A1 - Seibold, K. A1 - Wajant, H. T1 - XIAP-targeting drugs re-sensitize PIK3CA-mutated colorectal cancer cells for death receptor-induced apoptosis JF - Cell Death & Disease N2 - Mutations in the oncogenic PIK3CA gene are found in 10-20% of colorectal cancers (CRCs) and are associated with poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic TRAIL death receptor antibodies emerged as promising anti-neoplastic therapeutics, but to date failed to prove their capability in the clinical setting as especially primary tumors exhibit high rates of TRAIL resistance. In our study, we investigated the molecular mechanisms underlying TRAIL resistance in CRC cells with a mutant PIK3CA (PIK3CA-mut) gene. We show that inhibition of the constitutively active phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway only partially overcame TRAIL resistance in PIK3CA-mut-protected HCT116 cells, although synergistic effects of TRAIL plus PI3K, Akt or cyclin-dependent kinase (CDK) inhibitors could be noted. In sharp contrast, TRAIL triggered full-blown cell death induction in HCT116 PIK3CA-mut cells treated with proteasome inhibitors such as bortezomib and MG132. At the molecular level, resistance of HCT116 PIK3CA-mut cells against TRAIL was reflected by impaired caspase-3 activation and we provide evidence for a crucial involvement of the E3-ligase X-linked inhibitor of apoptosis protein (XIAP) therein. Drugs interfering with the activity and/or the expression of XIAP, such as the second mitochondria-derived activator of caspase mimetic BV6 and mithramycin-A, completely restored TRAIL sensitivity in PIK3CA-mut-protected HCT116 cells independent of a functional mitochondrial cell death pathway. Importantly, proteasome inhibitors and XIAP-targeting agents also sensitized other CRC cell lines with mutated PIK3CA for TRAIL-induced cell death. Together, our data suggest that proteasome-or XIAP-targeting drugs offer a novel therapeutic approach to overcome TRAIL resistance in PIK3CA-mutated CRC. KW - trail-mediated apoptosis KW - ligand trail KW - CASPASE-3 KW - resistance KW - BH3-only proteins KW - inhibitor KW - MCL-1 KW - degradation KW - activation KW - carcinoma Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114374 SN - 2041-4889 VL - 5 ER -