TY - JOUR A1 - Toussaint, André A1 - Richter, Anne A1 - Mantel, Frederick A1 - Flickinger, John C. A1 - Grills, Inga Siiner A1 - Tyagi, Neelam A1 - Sahgal, Arjun A1 - Letourneau, Daniel A1 - Sheehan, Jason P. A1 - Schlesinger, David J. A1 - Gerszten, Peter Carlos A1 - Guckenberger, Matthias T1 - Variability in spine radiosurgery treatment planning – results of an international multi-institutional study JF - Radiation Oncology N2 - Background The aim of this study was to quantify the variability in spinal radiosurgery (SRS) planning practices between five international institutions, all member of the Elekta Spine Radiosurgery Research Consortium. Methods Four institutions provided one representative patient case each consisting of the medical history, CT and MR imaging. A step-wise planning approach was used where, after each planning step a consensus was generated that formed the basis for the next planning step. This allowed independent analysis of all planning steps of CT-MR image registration, GTV definition, CTV definition, PTV definition and SRS treatment planning. In addition, each institution generated one additional SRS plan for each case based on intra-institutional image registration and contouring, independent of consensus results. Results Averaged over the four cases, image registration variability ranged between translational 1.1 mm and 2.4 mm and rotational 1.1° and 2.0° in all three directions. GTV delineation variability was 1.5 mm in axial and 1.6 mm in longitudinal direction averaged for the four cases. CTV delineation variability was 0.8 mm in axial and 1.2 mm in longitudinal direction. CTV-to-PTV margins ranged between 0 mm and 2 mm according to institutional protocol. Delineation variability was 1 mm in axial directions for the spinal cord. Average PTV coverage for a single fraction18 Gy prescription was 87 ± 5 %; Dmin to the PTV was 7.5 ± 1.8 Gy averaged over all cases and institutions. Average Dmax to the PRV_SC (spinal cord + 1 mm) was 10.5 ± 1.6 Gy and the average Paddick conformity index was 0.69 ± 0.06. Conclusions Results of this study reflect the variability in current practice of spine radiosurgery in large and highly experienced academic centers. Despite close methodical agreement in the daily workflow, clinically significant variability in all steps of the treatment planning process was demonstrated. This may translate into differences in patient clinical outcome and highlights the need for consensus and established delineation and planning criteria. KW - planning variability KW - spine radiosurgery KW - vertebral metastases KW - delineation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146687 VL - 11 IS - 57 ER - TY - JOUR A1 - Kläsner, Benjamin A1 - Buchmann, Niels A1 - Gempt, Jens A1 - Ringel, Florian A1 - Lapa, Constantin A1 - Krause, Bernd Joachim T1 - Early [\(^{18}\)F]FET-PET in Gliomas after Surgical Resection: Comparison with MRI and Histopathology JF - PLoS One N2 - Background The precise definition of the post-operative resection status in high-grade gliomas (HGG) is crucial for further management. We aimed to assess the feasibility of assessment of the resection status with early post-operative positron emission tomography (PET) using [\(^{18}\)F]O-(2-[\(^{18}\)F]-fluoroethyl)-L-tyrosine ([\(^{18}\)F]FET). Methods 25 patients with the suspicion of primary HGG were enrolled. All patients underwent preoperative [\(^{18}\)F]FET-PET and magnetic resonance imaging (MRI). Intra-operatively, resection status was assessed using 5-aminolevulinic acid (5-ALA). Imaging was repeated within 72h after neurosurgery. Post-operative [\(^{18}\)F]FET-PET was compared with MRI, intra-operative assessment and clinical follow-up. Results [\(^{18}\)F]FET-PET, MRI and intra-operative assessment consistently revealed complete resection in 12/25 (48%) patients and incomplete resection in 6/25 cases (24%). In 7 patients, PET revealed discordant findings. One patient was re-resected. 3/7 experienced tumor recurrence, 3/7 died shortly after brain surgery. Conclusion Early assessment of the resection status in HGG with [\(^{18}\)F]FET-PET seems to be feasible. KW - glioblastoma multiforme KW - brain tumors KW - C-11-methionine pet KW - positron-emission-tomography KW - improves KW - survival KW - delineation KW - radiotherapy KW - methionine pet KW - cerebral gliomas Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139549 VL - 10 IS - 10 ER -