TY - JOUR A1 - Grotemeyer, Alexander A1 - McFleder, Rhonda Leah A1 - Wu, Jingjing A1 - Wischhusen, Jörg A1 - Ip, Chi Wang T1 - Neuroinflammation in Parkinson’s disease – putative pathomechanisms and targets for disease-modification JF - Frontiers in Immunology N2 - Parkinson’s disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD. KW - Parkinson’s disease KW - neuroinflammation KW - T cells KW - microglia KW - neurodegeneration KW - animal models KW - inflammatory cascades Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274665 SN - 1664-3224 VL - 13 ER - TY - JOUR A1 - Albert-Weißenberger, Christiane A1 - Várrallyay, Csanád A1 - Raslan, Furat A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena T1 - An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice N2 - Traumatic brain injury (TBI) is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI. KW - Medizin KW - closed head injury KW - traumatic brain injury KW - neurobehavioural deficits KW - astrocyte KW - microglia KW - neurons Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75368 ER -