TY - THES A1 - Petrovic, Suzana T1 - In vivo analysis of homing pattern and differentiation potential of cells deriving from embryonic and adult haematopoietic regions T1 - In-vivo-Analyse der Besiedelung und der Differenzirung von Zellen die aus embrionalen und hämatopoetischen Regionen stammen N2 - The experimental work of this thesis addresses the questions of whether established cell lines injected into murine blastocysts find their way back home and seed preferentially at the site of their origin. Furthermore, can they change their fate and differentiate to unrelated cell types when exposed to the embryonic environment. This survey was based on the fact that different cell lines have different potentials in developing embryos, dependent on their cellular identity. The cell lines used in this survey were AGM region-deriving DAS 104-4, DAS 104-8 cells, yolk sac-deriving YSE cells and bone marrow-deriving FDCP mix cells. These cells were injected into mouse blastocysts. Donor cells were traced in developing embryos via specific markers. Analysis of the embryos revealed that DAS cells are promiscuous in their seeding pattern, since they were found in all analysed tissues with similar frequencies. YSE cells showed preferences in seeding yolk sac and liver. YSE donor cells in chimaeric tissues were not able to change their immuno-phenotype, indicating that they did not change their destiny. Analysis of adult mice did not reveal any of YSE-derived cells donor contribution. In contrast, FDCP mix cells mostly engrafted haematopoietic tissues, although the embryos analysed by in situ hybridization had donor signals frequently in cartilage primordia, heads, and livers. Analysis of whether FDCPmix-derived cells found in foetal livers were of haematopoietic or hepatocytes nature showed that progeny of injected FDCP mix cells do not differentiate into cells that express a hepatocyte-specific marker. Further analysis showed that FDCPmix-derived donor cells found in brain express neural or haematopoietic markers. In order to reveal if they transdifferentiate to neurons or fuse with neurons/glial cells, nuclear diameters of donor and recipient cells were determined. Comparison of the nuclear diameters of recipient and donor cells revealed no differences. Therefore this suggests that progeny of FDCP mix in brain are not fusion products. Analysis of adult mice tissues revealed that presence of FDCP mix-derived cells was the highest in brains. These results confirmed the assumption that the developmental potential of the analysed cells cannot be easily modified, even when exposed to early embryonic environment. Therefore one can conclude that the analysed cell types had different homing patterns depending on their origins. N2 - In der vorliegenden Arbeit wurde als zentrale Frage untersucht, wie Zellen verschiedener etablierter Zelllinien nach Injektion in murine Blastozysten an der Entwicklung der resultierenden chimären Tiere beitragen. Insbesondere wurde untersucht, ob injizierte Zellen bevorzugt oder ausschließlich Gewebe ihres Ursprungs besiedeln (“Homing“), oder ob Donorzellen auch heterologe Gewebe infiltrieren und gegebenenfalls gar unter dem Einfluß der frühembryonalen Blastozysten-Umgebung ihr Zellschicksal ändern und in andere Zelltypen transdifferenzieren können. Diese Studie basiert auf früheren Arbeiten, in denen gezeigt wurde, daß unterschiedliche Zelllinien - in Abhängigkeit ihrer Identität - verschiedene Entwicklungspotentiale im frühen Embryonalstadium haben. Folgende Zelllinien wurden in der vorliegenden Arbeit untersucht: DAS 104-4 und DAS 104-8 (beide aus der sogenannten AGM Region isoliert), YSE (aus dem Dottersack) und FDCP mix (aus Knochenmark abstammend). Zellen dieser Zelllinien wurden in Maus Blastozysten injiziert und der Chimärismus in sich entwickelnden Embryonen oder adulten Tieren mit Hilfe von Donorzell-spezifischen Markern analysiert. Die Analyse chimärer Embryonen ergab, daß DAS Zellen diese promiskuitiv besiedeln: DAS Zellen wurden in allen untersuchten Geweben mit ähnlichen Häufigkeiten gefunden. YSE Zellen hingegen wurden bevorzugt in der fötalen Leber und im Dottersack nachgewiesen. YSE Donorzellen in chimären Geweben zeigten keine Änderungen in ihrem Immunphänotyp und damit keine Hinweise auf eine mögliche Transdifferenzierung. In adulten Mäusen konnten keine YSE-abstammende Zellen mehr identifiziert werden. FDCP mix Zellen besiedelten vor allem hämatopoetische Gewebe. In Embryonen wurden allerdings auch häufig Donorzell-spezifische in situ Hybridisierungssignale in Knorpelvorläufergewebe, der Leber und in der Kopfregion erhalten. Die FDCP mix Marker positiven Zellen der fötalen Leber wurden negativ auf die Expression von Hepatozyten-Markern getestet. Dies spricht auch in diesem Fall gegen einen Wechsel der Donorzellidentität und Transdifferenzierung. Im Gegensatz dazu wurden im Gehirn FDCP mix abstammende Spenderzellen identifiziert, die entweder neurale oder hämatopoetische Marker tragen. Die Zellkerndurchmesser wurden für die Donor-abstammenden Zellen und für die endogenen Gehirnzellen bestimmt und wiesen keinen signifikanten Unterschied auf. Dieser Befund läßt vermuten, daß FDCP mix abstammende Zellen mit Expression von neuralen Markern nicht das Produkt von Zellfusion von Donorzellen mit Neuronen oder Gliazellen sind. In der Analyse von adulten Mäusen wurden FDCP mix abstammende Zellen am häufigsten im Gehirn identifiziert. Die Ergebnisse dieser Arbeit zeigen für die analysierten Zelllinien, daß sich deren Entwicklungspotential auch bei Exposition in frühembryonalem Milieu nicht leicht modifizieren läßt. Es wurde weiterhin gezeigt, daß die analysierten Zelltypen in Bezug auf ihren Ursprung ein sehr unterschiedliches “Homing“-Verhalten aufweisen. KW - Zelllinie KW - Zelldifferenzierung KW - Maus KW - Embryonalentwicklung KW - Blastozysten KW - DAS104-4 KW - DAS104-8 KW - YSE KW - FDCPmix KW - Blastocysts KW - DAS104-4 KW - DAS104-8 KW - YSE KW - FDCPmix Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9323 ER - TY - THES A1 - Tyrsin, Oleg T1 - Role of Raf family members in mouse development T1 - Rolle der Raf-Kinase Familie in der Mausentwicklung N2 - Raf Proteine sind Serin/Threonin Kinasen, die als zentrale Elemente des Ras, Raf, Mek, Map Kinase Wegs, an der Weiterleitung von extrazellulären Signalen von der Zellmembran zu nukleären Effektoren beteiligt sind. Auf diese Weise kontrollieren sie elementare Prozesse wie Proliferation, Differenzierung und das Überleben von Zellen. In Säugetieren wurden drei funktionelle Gene (A-, B- and C-raf) beschrieben. Aus biochemischen Untersuchungen ergibt sich, dass die Isozyme überlappende aber auch differentielle Funktionen übernehmen. Allerdings wurde ein differenziertes Verständnis der jeweiligen spezifischen Rolle dadurch erschwert, dass in den meisten Zelltypen verschiedene Raf-Isozyme expremiert werden und dass wegen der Vielzahl der Aktivatoren und Effektoren eine eindeutige Isoform-Zuordnung schwer möglich war. Aufgrund der Beteiligung an verschiedenen Krankheitsbildern, insbesondere der Tumorentstehung und –progression, ist jedoch die Aufklärung der Isozym-spezifischen Funktionen von vorranginger wissenschaftlicher Bedeutung. B-Raf hat unter den Raf Kinasen die höchste Kinaseaktivität und zeigt antiapoptotische Eigenschaften. B-Raf knockout Mäuse zeigen eine allgemeine Wachstumsverzögerung und sterben zwischen E10,5 und E12,5 aufgrund fehlentwickelter Gefässe in Folge massiver Apoptose differenzierter Endothelzellen. [1]. Um die Lethalität des B-Raf-/- (KO) Phänotyps zu überkommen und um die Redundanz der B-Raf Proteine weiter zu untersuchen, wurden Mäuse generiert, die unter der Kontrolle des B-Raf Promoters statt B-Raf eine A-Raf cDNA exprimieren. Nur in einem Fall entwickelte sich eine ausgewachsene p20 Maus ohne sichtbare Entwicklungsdefekte oder Verhaltensauffälligkeiten. Darüber hinaus wurden lebende Embryonen mit normaler Entwicklung aber reduzierter Grösse mit niedriger Inzidenz zwischen E12,5d und E16,5d beobachtet. In allen diesen Fällen fanden wir ein intaktes Gefäßsystem. Andererseits waren Neurogenese und die Bewegung der neuralen Vorläuferzellen in den überlebenden Embryonen gestört, was in einigen Fällen zu unterentwickelten Hirnregionen führte. Mittels TUNEL bzw. PCNA Assay konnten wir zeigen, dass mehr apoptotische und weniger proliferierende Zellen in ventrikulärer und subventrikulärer Zone der Hirn Ventrikel und im Striatum der KIN Embryonen zu finden sind. Außerdem wurden in einer Reihe von Geweben von E13,5d und in den Lungen von E16,5d Embryonen, vermehrt apoptotische Zellen beobachtet. Dies war in der einen ausgewachsenen KIN Maus nicht der Fall. Diese zeigte einen reduzierten Anteil an neuronalen Vorläuferzellen in der subgranulären Zone des Hippocampus und an reifen Neuronen im Riechkolben. Ansonsten waren aber keine Störungen der Neurogenese in der ausgewachsenen KIN Maus detektierbar. Fibroblasten die aus KIN Embryonen etabliert wurden, zeigten im Vergleich zu Wildtypzellen reduzierte Fähigkeit zur Proliferation und erhöhte Sensibilität gegenüber Apoptoseauslösern. Die erhöhte Apoptosetendenz spiegelte sich auf molekularer Ebene in einer Reduktion an antiapoptotischen Molekülen wieder. Aktive ERK und Akt Kinase sind erniedrigt. Außerdem war von dem bekannten Raf Substrat BAD, weniger an der inaktiven phosphorylierten Form zu beobachten, wodurch bei gleicher Menge Gesamtprotein auf ein Mehr an proapoptotischem unphosphoryliertem BAD geschlossen werden kann. Zusammengefasst zeigen diese Daten, dass die Substitution von B-Raf durch die weniger aktive A-Raf Kinase zwar die endotheliale Apoptose verhindern kann, die die Ursache für das frühe Absterben der B-Raf-/- (KO) Mäuse ist, dass aber die normale Entwicklung dennoch entscheidend gestört ist. N2 - Cellular proliferation, differentiation and survival in response to extracellular signals are controlled by the signal transduction pathway of Ras, Raf and MAP kinase. The Raf proteins are serine/threonine kinases with essential function in growth/differentiation/survival - related signal transduction events. In mammals, three functional (A-, B-, and C-Raf) genes were described. Biochemical studies suggest overlapping and differential utilization of Raf isozymes. However, the frequent co-expression of Raf isozymes and their multiple activators and effectors impedes the full understanding of their specific roles. The elucidation of these roles is important due to the involvement of the Ras/Raf/MEK/MAP kinase cascade in human disorders especially in tumor development and progression. B-Raf was shown to posses the strongest kinase activity among Raf kinases and display antiapoptotic properties. Mice deficient in B-Raf show overall growth retardation and die between E10.5 and E12.5 of vascular defects caused by excessive death of differentiated endothelial cells. To elucidate the redundancy of Raf isozymes during embryonic development and to rescue B-Raf-/- (KO) phenotype, B-Raf alleles were disrupted by introducing A-Raf cDNA under the control of endogenous B-Raf promoter. The resulting BRaf A-Raf/A-Raf (KIN) phenotype depends on genetic background. The living embryos displaying normal development but size reduction were found with low incidence at E12.5d-16.5d. All of them displayed the rescue of vascular system. One adult p20 mouse without any visible defects in development and behavior was obtained. On the other hand, the processes of neurogenesis and neural precursors migration in survived embryos were disturbed which led in some cases to underdevelopment of different brain compartments. TUNEL and cell proliferation (PCNA staining) assays revealed more apoptotic (E13.5d) and less proliferating(E12.5d cells within ventricular and sub-ventricular zones of brain ventricles and in striatum of KIN embryos. In addition, more apoptotic cells were detected in many other tissues of E13.5d and in lung of E16.5d KIN embryos but not in adult KIN mouse. p20 KIN mouse demonstrated reduced fraction of neural precursor cells in sub-granular zone of hippocampus and mature neurons in olfactory bulb. The other processes of neurogenesis were not disturbed in adult KIN animal. Fibroblasts obtained from KIN embryos demonstrated less proliferative ability and were more susceptible to apoptotic stimuli compared to WT. This was accompanied by the reduction of active ERK and Akt required for survival, and with decrease of inactive phosphorylated BAD. The kinetic of both ERK and Akt phosphorylation upon serum stimulation was delayed. All these data indicate that moderate A-Raf kinase activity can prevent the endothelial apoptosis but is not enough to completely rescue the other developmental consequences. KW - Maus KW - Embryonalentwicklung KW - Raf Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9453 ER - TY - THES A1 - Xiang, Chaomei T1 - The role of B-RAF in embryonic development of mouse forebrain T1 - Die Rolle von B-RAF in der Embryonalentwicklung des Maus-Vorderhirns N2 - Die Familie der RAF-Kinasen umfasst drei Mitglieder, A-RAF, B-RAF und C-RAF. Nur für die B-RAF-Isoform wurde eine wichtige Funktion für die Entwicklung des Zentralen Nervensystems (ZNS) gefunden. Das Fehlen von B-RAF führt bei neu generierten embryonalen Neuronen zum Zelltod, weil sie in vitro nicht auf überlebensfaktoren reagieren können. Bei einer zweiten Zelllinie, die durch die Abwesenheit von B-RAF beeinträchtigt ist, handelt es sich um endotheliale Zellen. Ihr Zelltod führt zu inneren Blutungen und zu Letalität von B-RAF-/--Mäusen zwischen Tag 10.5 (E10.5) und 12.5 (E12.5) der Embryonalentwicklung. Dies verhinderte bisher weitere Untersuchungen der neuralen B-RAF-Funktion bei späteren Stadien. Im Gegensatz zu B-RAF-/--Mäusen überleben B-RAFKIN/KIN-Mäuse die Mitte der Embryonalentwicklung, da ihre Endothelzellen vor Apoptose geschätzt sind. Diese Tiere besitzen kein B-RAF, stattdessen wird im B-RAF-Locus ein chimäres Protein exprimiert, das den N-Terminus von B-RAF sowie alle Domänen von A-RAF umfasst. Der Schutz vor abnormaler neuraler Apoptose im Vorderhirn macht diese Tiere zu einem potentiellen Modell zur Untersuchung der Proliferations- und Differenzierungsfunktion von B-RAF, die die Kinase neben der Überlebensfunktion in der ZNS-Entwicklung ausübt. Die detaillierte Untersuchung der B-RAFKIN/KIN-Tiere konzentrierte sich auf die Entwicklung der Hirnrinde. Augenscheinlich waren kortikale Defekte im B-RAFKIN/KIN Vorderhirn: Der Verlust von B-RAF führte zu einer starken Reduzierung von Brn-2 exprimierenden pyramidalen Projektions-Neuronen begleitet von einer Störung der Dendritenbildung mit weniger und dünneren Dendriten in diesen oberen Schichten. Weitere Untersuchungen mit BrdU-Markierungsexperimenten zeigten in der ventrikulären Schicht reduzierte Zellproliferation für E14.5-E16.5 der Mutantenembryonen und ein Migrationsdefizit der spätgebideten kortikalen Neuronen. Während der Proliferationsdefekt der Hirnrinden-Vorläuferzellen mit einer reduzierten ERK-Aktivierung einherging, bleibt der Mechanismus der gestörten neuralen Migration zu erklären. Unsere Hypothese ist, dass die subzelluläre Lokalisation von Phospho-ERK in den wandernden Hirnrinden-Neuronen der B-RAFKIN/KIN-Mäuse verändert sein könnte. Zur Bestäigung der in vivo-Funktion von B-RAF und weiteren Studien zu ihrer unbekannten Rolle in der embryonalen Neurogenese sowie anderen Morphogenesen wäre die konditionale B-RAF Inaktivierung erforderlich. Durch die Deletion des genetischen Materials bzw. die Inaktivierung der Genfunktion in ausgew�hlten Zellen zu einem bestimmten Zeitpunkt ließen sich die Embryo-Letalität sowie unerwünschte pleiotrope Nebeneffekte vermeiden und akkumulierende, kompensierende Entwicklungsveränderungen von Beginn an ausschließen. Um die Cre Rekombinase-Methode einsetzen zu können, wurden floxed B-RAF embryonale Stammzell (ES)-Zelllinien generiert. Außerdem wurde ein auf dem Tetrazyklin Operator basierendes Schaltallel in den B-RAF Genort von embryonalen Stammzellen integriert, so dass die B-RAF Expression konditional und reversibel durch die Zugabe von Doxyzyklin angeschaltet werden konnte. Bisher wurden hochgradige chimäre Mäuse nach Blastozysten-Injektion geboren. Die Keimbahnübertragung dieser chimären Mäuse wird momentan untersucht. Wenn beide konditionale Mauslinien bereit sind, k�nnte die Entwicklung ihres Zentralnervensystems untersucht werden, um die Rolle von B-RAF in der Entwicklung des Nervensystems herauszufinden. N2 - The RAF family of protein kinases consists of three members, A-RAF, B-RAF and C-RAF. Unlike the other isotypes, B-RAF has been found to have an important function for normal development of the central nervous system (CNS), because newly generated embryonic neurons lacking B-RAF cannot respond to survival factors and undergo cell death in vitro. A second cell lineage affected by the absence of B-RAF are endothelial cells and their death leads to internal bleedings and lethality of B-RAF-/- mice between embryonic day 10.5 (E10.5) and E12.5 precluding an opportunity to further analyze neural B-RAF function at a later stage. In contrast to B-RAF-/- mice, B-RAFKIN/KIN mice, which are B-RAF deficient but express a chimeric protein consisting of the unique N terminus of B-RAF and all the domains of A-RAF in the B-RAF gene locus, survive after midgestation because their endothelial cells are protected from apoptosis. More importantly, overall prevention of abnormal neural apoptosis in the forebrain allows us to study proliferation- or differentiation-oriented function of B-RAF other than its survival effects in CNS development. The detailed investigation of B-RAFKIN/KIN animals was concentrated on cortical development. There were apparent cortical defects in B-RAFKIN/KIN forebrain: Loss of B-RAF led to severe reduction of Brn-2 expressing pyramidal projection neurons accompanied by a disruption of dendrite formation in the upper layers. In further analysis, BrdU labelling experiments showed that from E14.5 to E16.5 cell proliferation in the ventricular zone of the mutant mice was reduced and that the late-born cortical neurons failed to migrate properly. While the proliferation defect of cortical progenitors was associated with reduced ERK activation, the mechanism causing impaired neuronal migration remains to be determined. Our hypothesis is that the subcellular localization of phospho-ERK may be altered in migrating cortical neurons in B-RAFKIN/KIN mice. To confirm in vivo function of B-RAF and further study unknown roles in embryonic neurogenesis as well as other morphogenesis, conditional B-RAF knockouts would be the ideal models, which can efficiently avoid embryonic lethality, prevent unwanted pleiotropic side effects and exclude accumulative compensatory developmental changes from the earliest developmental stage on, through the deletion of genetic material/gene function in selected cells at a specific time. The use of site-specific recombinases such as Cre and the successful development of the reversible tetracycline-based switch have provided powerful venues for creating conditional loss-of-function mouse models. Generation of tetracycline-regulated B-RAF and floxed B-RAF mouse embryonic stem (ES) cell lines was performed. Up to now, high-grade chimeric mice were obtained after blastocyst injection of the modified ES cell clones. The germline transmission from these chimeric mice is currently under investigation. When either of conditional mouse lines is ready, detailed examination in their CNS development would be done to reveal how B-RAF plays a real role for normal development of the nervous system. KW - Maus KW - Embryonalentwicklung KW - Protein-Serin-Threonin-Kinasen KW - Vorderhirn KW - B-RAF KW - neurale Migration KW - Hirnrinden KW - Vorderhirn KW - B-RAF KW - neuronal migration KW - neocortex KW - forebrain Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18326 ER - TY - THES A1 - Zanucco, Emanuele T1 - Role of oncogenic and wild type B-RAF in mouse lung tumor models T1 - Untersuchungen zur Rolle der onkogenen und wildtypischen B-RAF Kinase in Lungentumormodellen der Maus N2 - Von Wachstumsfaktoren regulierte Signalkaskaden sind Schlüsselelemente in der Gewebeentwicklung und Geweberegeneration. Eine Deregulation dieser Kaskaden führt zu Entwicklungsstörungen und neoplastischen Krankheiten. Für viele humane Krebsformen sind aktivierende Mutationen der Kinasen der RAF Familie verantwortlich. Das erste Projekt dieser Doktorarbeit fokussiert auf der Rolle des B-RAF V600E, welches als eine der am häufigsten vorkommenden Mutantionen in humanen Krebszellen identifiziert worden ist. Um die onkogene Funktion des B-RAF V600E zu untersuchen, haben wir transgene Mauslinien hergestellt, welche das aktivierte Onkogen spezifisch in alveolaren Lungenepithelzellen des Typ II exprimieren. Konstitutive Expression des B-RAF V600E führte zu einer abnormen alveolaren Epithelzellbildung und zu Emphysem-ähnlichen Läsionen. Diese Läsionen wiesen Zeichen einer Gewebsumstrukturierung auf, oft in Assoziation mit chronischer Inflammation und geringer Inzidenz von Lungentumoren. Die Infiltration der entzündlichen Zellen erfolgte erst nach der Entstehung von Emphysem-ähnlichen Läsionen und könnte zur späteren Tumorbildung beigetragen haben. Diese Ergebnisse unterstützen ein Modell, in welchem der kontinuierliche regenerative Prozess eine tumorfördernde Umgebung schafft. Dabei induziert die Aktivität des onkogenen B-RAF eine alveolare Störung, welche ursächlich verantwortlich ist für den kontinuierlichen regenerativen Prozess. Das zweite Projekt fokussiert auf die Rolle von endogenem (wildtypischen) B-RAF in einem durch onkogenes C-RAF induzierten Maus Lungentumormodell. Für unsere Untersuchungen haben wir eine Mauslinie geschaffen, in welcher B-RAF in den C-RAF Lungentumoren konditionell eliminiert werden kann. Eine konditionelle Eliminierung des B-RAF hat die Entstehung von Lungentumoren nicht blockiert, aber zu reduziertem Tumorwachstum geführt. Dieses reduzierte Tumorwachstum konnte auf eine reduzierte Zellproliferation zurückgeführt werden. Außerdem konnten wir durch die B-RAF Elimination eine Reduktion der Intensität der mitogenen Signalkaskade beobachten. Insgesamt deuten die Ergebnisse darauf hin, dass das onkogene Potential von C-RAF in vivo unabhängig von B-RAF ist und eine Kooperation von B-RAF und C-RAF jedoch für die vollständige Aktivierung der mitogenen Signalkaskade wichtig ist. N2 - Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Deregulation of the cascades has severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of many human cancers. In the first project described in this thesis we focused on B-RAF V600E that has been identified as the most prevalent B-RAF mutant in human cancer. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. Inflammatory cell infiltration did not precede the formation of emphysema-like lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation. In the second project we focused on wild type B-RAF and its role in an oncogenic-C-RAF driven mouse lung tumor model. Toward this aim we have generated compound mice in which we could conditionally deplete B-RAF in oncogenic-C-RAF driven lung tumors. Conditional elimination of B-RAF did not block lung tumor formation however led to reduced tumor growth. The diminished tumor growth was not caused by increased cell death instead was a consequence of reduced cell proliferation. Moreover, B-RAF ablation caused a reduction in the amplitude of the mitogenic signalling cascade. These data indicate that in vivo B-RAF is dispensable for the oncogenic potential of active C-RAF; however it cooperates with oncogenic C-RAF in the activation of the mitogenic cascade. KW - Lungenkrebs KW - Biochemie KW - Maus KW - Lung cancer KW - RAF Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69603 ER -