TY - JOUR A1 - Afonso-Grunz, Fabian A1 - Hoffmeier, Klaus A1 - Müller, Sören A1 - Westermann, Alexander J. A1 - Rotter, Björn A1 - Vogel, Jörg A1 - Winter, Peter A1 - Kahl, Günter T1 - Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells JF - BMC Genomics N2 - Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro-and eukaryotic cells without prior fixation or physical disruption of the interaction. Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium. KW - complete genome sequence KW - secretion systems KW - RNA-Seq KW - deepSuperSAGE KW - transcriptome KW - gene expression KW - serovar Typhimurium KW - human macrophages KW - epithelial cells KW - infection KW - SuperSAGE KW - receptors KW - Dual 3'seq KW - MACE KW - tag based KW - simultaneous KW - genome wide KW - gene expression profiling KW - host pathogen interaction KW - Salmonella enterica Typhimurium strain SL1344 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143230 VL - 16 IS - 323 ER - TY - JOUR A1 - Fan, Ben A1 - Li, Lei A1 - Chao, Yanjie A1 - Förstner, Konrad A1 - Vogel, Jörg A1 - Borriss, Rainer A1 - Wu, Xiao-Qin T1 - dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42 JF - PLoS One N2 - Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions. KW - gene expression KW - subtilis genome KW - enterica serovar thphimurium KW - small regulatory RNAs KW - binding protein HFQ KW - escherichia coli KW - messenger RNA KW - transcriptional landscape KW - mycobacterium tuberculosis KW - listeria monocytogenes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138369 VL - 10 IS - 11 ER - TY - JOUR A1 - Irmer, Henriette A1 - Tarazona, Sonia A1 - Sasse, Christoph A1 - Olbermann, Patrick A1 - Loeffler, Jürgen A1 - Krappmann, Sven A1 - Conesa, Ana A1 - Braus, Gerhard H. T1 - RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior JF - BMC Genomics N2 - Background: Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results: We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions: We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. KW - Saccharomyces cerevisiae KW - cerebral aspergillosis KW - gene expression KW - Aspergillus fumigatus KW - iron homeostasis KW - invasive pulmonary aspergillosis KW - Candida albicans KW - cell wall KW - lysine biosynthesis KW - human pathogen KW - murine model KW - virulence KW - mRNA-Seq KW - transcriptome KW - human pathogenic fungi KW - secondary metabolite gene cluster KW - detoxification Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151390 VL - 16 IS - 640 ER - TY - JOUR A1 - Rutkowski, Andrzej J. A1 - Erhard, Florian A1 - L'Hernault, Anne A1 - Bonfert, Thomas A1 - Schilhabel, Markus A1 - Crump, Colin A1 - Rosenstiel, Philip A1 - Efstathiou, Stacey A1 - Zimmer, Ralf A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - Widespread disruption of host transcription termination in HSV-1 infection JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. KW - herpes simplex virus KW - RNA polymerase II KW - gene expression KW - alpha-globin KW - motif discovery KW - regulatory protein ICP27 KW - poly(A) site usage KW - pre-messenger RNA KW - splicing inhibition KW - type 1 ICP27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148643 VL - 6 IS - 7126 ER - TY - JOUR A1 - Schneider, Johannes A1 - Klein, Teresa A1 - Mielich-Süss, Benjamin A1 - Koch, Gudrun A1 - Franke, Christian A1 - Kuipers, Oskar P. A1 - Kovács, Ákos T. A1 - Sauer, Markus A1 - Lopez, Daniel T1 - Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium JF - PLoS Genetics N2 - Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. KW - membrane proteins KW - gene expression KW - bacillus subtilis KW - fluorescence microscopy KW - cell fusion KW - signal transduction KW - gene regulation KW - lipids Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125577 VL - 11 IS - 4 ER - TY - JOUR A1 - Tsai, Yu-Chen A1 - Grimm, Stefan A1 - Chao, Ju-Lan A1 - Wang, Shih-Chin A1 - Hofmeyer, Kerstin A1 - Shen, Jie A1 - Eichinger, Fred A1 - Michalopoulou, Theoni A1 - Yao, Chi-Kuang A1 - Chang, Chih-Hsuan A1 - Lin, Shih-Han A1 - Sun, Y. Henry A1 - Pflugfelder, Gert O. T1 - Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling JF - PLoS ONE N2 - Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired. KW - morphogenetic furrow progression KW - cell fate KW - compartment boundary KW - reporter gene KW - compound eye KW - gene expression KW - retinal differentiation KW - acts downstream KW - imaginal disk KW - glial cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143577 VL - 10 IS - 3 ER - TY - JOUR A1 - Zannas, Anthony S. A1 - Arloth, Janine A1 - Carrillo-Roa, Tania A1 - Iurato, Stella A1 - Röh, Simone A1 - Ressler, Kerry J. A1 - Nemeroff, Charles B. A1 - Smith, Alicia K. A1 - Bradley, Bekh A1 - Heim, Christine A1 - Menke, Andreas A1 - Lange, Jennifer F. A1 - Brückl, Tanja A1 - Ising, Marcus A1 - Wray, Naomi R. A1 - Erhardt, Angelika A1 - Binder, Elisabeth B. A1 - Mehta, Divya T1 - Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling JF - Genome Biology N2 - Background Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. Results We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Conclusions Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk. KW - aging KW - DNA methylation KW - gene expression KW - glucocorticoids KW - psychological stress KW - aging-related disease KW - epigenetics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149865 VL - 16 IS - 266 ER - TY - JOUR A1 - Zhang, Yi A1 - Lee, Chil-Woo A1 - Wehner, Nora A1 - Imdahl, Fabian A1 - Svetlana, Veselova A1 - Weiste, Christoph A1 - Dröge-Laser, Wolfgang A1 - Deeken, Rosalia T1 - Regulation of Oncogene Expression in T-DNA-Transformed Host Plant Cells JF - PLoS Pathogens N2 - Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance cytokinin and auxin levels for further cell proliferation. KW - luminescence KW - oncogenes KW - agrobacterium tumefaciens KW - transcription factors KW - auxins KW - gene expression KW - cytokinins KW - plant cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125256 VL - 11 IS - 1 ER -