TY - JOUR A1 - Ruczyński, Ireneusz A1 - Bartoń, Kamil A. T1 - Modelling Sensory Limitation: The Role of Tree Selection, Memory and Information Transfer in Bats' Roost Searching Strategies JF - PLoS One N2 - Sensory limitation plays an important role in the evolution of animal behaviour. Animals have to find objects of interest (e.g. food, shelters, predators). When sensory abilities are strongly limited, animals adjust their behaviour to maximize chances for success. Bats are nocturnal, live in complex environments, are capable of flight and must confront numerous perceptual challenges (e.g. limited sensory range, interfering clutter echoes). This makes them an excellent model for studying the role of compensating behaviours to decrease costs of finding resources. Cavity roosting bats are especially interesting because the availability of tree cavities is often limited, and their quality is vital for bats during the breeding season. From a bat's sensory point of view, cavities are difficult to detect and finding them requires time and energy. However, tree cavities are also long lasting, allowing information transfer among conspecifics. Here, we use a simple simulation model to explore the benefits of tree selection, memory and eavesdropping (compensation behaviours) to searches for tree cavities by bats with short and long perception range. Our model suggests that memory and correct discrimination of tree suitability are the basic strategies decreasing the cost of roost finding, whereas perceptual range plays a minor role in this process. Additionally, eavesdropping constitutes a buffer that reduces the costs of finding new resources (such as roosts), especially when they occur in low density. We conclude that natural selection may promote different strategies of roost finding in relation to habitat conditions and cognitive skills of animals. KW - New Zealand KW - netcar-feeding bats KW - big brown bats KW - long-term reuse KW - nyctalus noctula KW - chalinolobus-tuberculatus KW - eptesicus-fuscus KW - social calls KW - dwelling bat KW - rain forest Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133963 VL - 7 IS - 9 ER - TY - JOUR A1 - Klingler, Werner A1 - Heiderich, Sebastian A1 - Girard, Thierry A1 - Gravino, Elvira A1 - Heffron, James J. A. A1 - Johannsen, Stephan A1 - Jurkat-Rott, Karin A1 - Rüffert, Henrik A1 - Schuster, Frank A1 - Snoeck, Marc A1 - Sorrentino, Vincenzo A1 - Tegazzin, Vincenzo A1 - Lehmann-Horn, Frank T1 - Functional and genetic characterization of clinical malignant hyperthermia crises: a multi-centre study JF - Orphanet Journal of Rare Diseases N2 - Background: Malignant hyperthermia (MH) is a rare pharmacogenetic disorder which is characterized by life-threatening metabolic crises during general anesthesia. Classical triggering substances are volatile anesthetics and succinylcholine (SCh). The molecular basis of MH is excessive release of Ca2+ in skeletal muscle principally by a mutated ryanodine receptor type 1 (RyR1). To identify factors explaining the variable phenotypic presentation and complex pathomechanism, we analyzed proven MH events in terms of clinical course, muscle contracture, genetic factors and pharmocological triggers. Methods: In a multi-centre study including seven European MH units, patients with a history of a clinical MH episode confirmed by susceptible (MHS) or equivocal (MHE) in vitro contracture tests (IVCT) were investigated. A test result is considered to be MHE if the muscle specimens develop pathological contractures in response to only one of the two test substances, halothane or caffeine. Crises were evaluated using a clinical grading scale (CGS), results of IVCT and genetic screening. The effects of SCh and volatile anesthetics on Ca2+ release from sarcoplasmic reticulum (SR) were studied in vitro. Results: A total of 200 patients met the inclusion criteria. Two MH crises (1%) were triggered by SCh (1 MHS, 1 MHE), 18% by volatile anesthetics and 81% by a combination of both. Patients were 70% male and 50% were younger than 12 years old. Overall, CGS was in accord with IVCT results. Crises triggered by enflurane had a significantly higher CGS compared to halothane, isoflurane and sevoflurane. Of the 200 patients, 103 carried RyR1 variants, of which 14 were novel. CGS varied depending on the location of the mutation within the RyR1 gene. In contrast to volatile anesthetics, SCh did not evoke Ca2+ release from isolated rat SR vesicles. Conclusions: An MH event could depend on patient-related risk factors such as male gender, young age and causative RyR1 mutations as well as on the use of drugs lowering the threshold of myoplasmic Ca2+ release. SCh might act as an accelerant by promoting unspecific Ca2+ influx via the sarcolemma and indirect RyR1 activation. Most MH crises develop in response to the combined administration of SCh and volatile anesthetics. KW - susceptibility KW - central core disease KW - skeletal muscle KW - North American KW - malignant hyperthermia KW - succinylcholine KW - suxamethonium KW - volatile anesthetics KW - RyR1 mutations KW - New Zealand KW - inhalation anesthetics KW - sarcoplasmic reticulum KW - ryanodine receptor gene KW - vitro contracture test Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117630 SN - 1750-1172 VL - 9 IS - 8 ER -