TY - JOUR A1 - Schneider, Johannes A1 - Klein, Teresa A1 - Mielich-Süss, Benjamin A1 - Koch, Gudrun A1 - Franke, Christian A1 - Kuipers, Oskar P. A1 - Kovács, Ákos T. A1 - Sauer, Markus A1 - Lopez, Daniel T1 - Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium JF - PLoS Genetics N2 - Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. KW - membrane proteins KW - gene expression KW - bacillus subtilis KW - fluorescence microscopy KW - cell fusion KW - signal transduction KW - gene regulation KW - lipids Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125577 VL - 11 IS - 4 ER - TY - JOUR A1 - Schmoll, T. A1 - Morschhäuser, J. A1 - Ott, M. A1 - Ludwig, B. A1 - Van Die, I. A1 - Hacker, Jörg T1 - Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesin determinant: nucleotide sequence of the genes sfaB, C, D, E, F. N2 - The S fimbrial adhesin (sfa) determinant of E. co/i comprises nine genes situated on a stretch of 7.9 kilobases (kb) DNA. Here the nucleotide sequence of the genes sfa B and sfaC situated proximal to the main structural gene sfaA is described. Sfa-LacZ fusions show that the two genes are transcribed in opposite directions. The isolation of mutants in the proximal region of the sfa gene cluster, the construction of sfa-phoA gene fusions and subsequent transcomplementation sturlies indicated that the genes sfaB and sfaC play a role in regulation of the sfa determinant. ln addition the nucleotide sequence of the genes sfa D, sfa E and sfa F situated between the genes sfaA and sfaG responsible for S subunit proteins, were determined. lt is suggested that these genes are involved in transport and assembly of fimbrial subunits. Thus the entire genetic organization of the sfa determinant is presented and compared with the gene clusters coding for P fimbriae (pap), F1 C fimbriae (foc) and type I fimbriae ( fim). The evolutionary relationship of fimbrial adhesin determinants is discussed. KW - Infektionsbiologie KW - Escherichia coli KW - S fimbrial adhesin (Sfa) KW - genetic organization KW - gene regulation KW - nucleotide sequence Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59661 ER - TY - JOUR A1 - Rohmer, Carina A1 - Dobritz, Ronja A1 - Tuncbilek-Dere, Dilek A1 - Lehmann, Esther A1 - Gerlach, David A1 - George, Shilpa Elizabeth A1 - Bae, Taeok A1 - Nieselt, Kay A1 - Wolz, Christiane T1 - Influence of Staphylococcus aureus strain background on Sa3int phage life cycle switches JF - Viruses N2 - Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation. KW - phage KW - virulence KW - induction KW - gene regulation KW - Staphylococcus KW - hemolysin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297209 SN - 1999-4915 VL - 14 IS - 11 ER - TY - JOUR A1 - Riedel, Alice A1 - Mofolo, Boitumelo A1 - Avota, Elita A1 - Schneider-Schaulies, Sibylle A1 - Meintjes, Ayton A1 - Mulder, Nicola A1 - Kneitz, Susanne T1 - Accumulation of Splice Variants and Transcripts in Response to PI3K Inhibition in T Cells JF - PLoS ONE N2 - Background Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results Applying our algorithm to the data, 9% of the genes were assigned as AS, while only 3% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression. KW - T cells KW - gene regulation KW - alternative splicing KW - measles virus KW - T cell receptors KW - reverse transcriptase-polymerase chain reaction KW - cell cycle and cell division KW - TCR signaling cascade Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130335 VL - 8 IS - 2 ER - TY - JOUR A1 - Morton, Charles Oliver A1 - Fliesser, Mirjam A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Bauer, Ruth A1 - Kneitz, Susanne A1 - Hope, William A1 - Rogers, Thomas Richard A1 - Einsele, Hermann A1 - Löffler, Jürgen T1 - Gene Expression Profiles of Human Dendritic Cells Interacting with Aspergillus fumigatus in a Bilayer Model of the Alveolar Epithelium/Endothelium Interface N2 - The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA. KW - aspergillus fumigatus KW - gene expression KW - immune receptors KW - immune response KW - denritic cells KW - B cell receptors KW - gene regulation KW - RNA extraction Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112893 ER - TY - JOUR A1 - Loeffler-Wirth, Henry A1 - Kreuz, Markus A1 - Hopp, Lydia A1 - Arakelyan, Arsen A1 - Haake, Andrea A1 - Cogliatti, Sergio B. A1 - Feller, Alfred C. A1 - Hansmann, Martin-Leo A1 - Lenze, Dido A1 - Möller, Peter A1 - Müller-Hermelink, Hans Konrad A1 - Fortenbacher, Erik A1 - Willscher, Edith A1 - Ott, German A1 - Rosenwald, Andreas A1 - Pott, Christiane A1 - Schwaenen, Carsten A1 - Trautmann, Heiko A1 - Wessendorf, Swen A1 - Stein, Harald A1 - Szczepanowski, Monika A1 - Trümper, Lorenz A1 - Hummel, Michael A1 - Klapper, Wolfram A1 - Siebert, Reiner A1 - Loeffler, Markus A1 - Binder, Hans T1 - A modular transcriptome map of mature B cell lymphomas JF - Genome Medicine N2 - Background Germinal center-derived B cell lymphomas are tumors of the lymphoid tissues representing one of the most heterogeneous malignancies. Here we characterize the variety of transcriptomic phenotypes of this disease based on 873 biopsy specimens collected in the German Cancer Aid MMML (Molecular Mechanisms in Malignant Lymphoma) consortium. They include diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), Burkitt’s lymphoma, mixed FL/DLBCL lymphomas, primary mediastinal large B cell lymphoma, multiple myeloma, IRF4-rearranged large cell lymphoma, MYC-negative Burkitt-like lymphoma with chr. 11q aberration and mantle cell lymphoma. Methods We apply self-organizing map (SOM) machine learning to microarray-derived expression data to generate a holistic view on the transcriptome landscape of lymphomas, to describe the multidimensional nature of gene regulation and to pursue a modular view on co-expression. Expression data were complemented by pathological, genetic and clinical characteristics. Results We present a transcriptome map of B cell lymphomas that allows visual comparison between the SOM portraits of different lymphoma strata and individual cases. It decomposes into one dozen modules of co-expressed genes related to different functional categories, to genetic defects and to the pathogenesis of lymphomas. On a molecular level, this disease rather forms a continuum of expression states than clearly separated phenotypes. We introduced the concept of combinatorial pattern types (PATs) that stratifies the lymphomas into nine PAT groups and, on a coarser level, into five prominent cancer hallmark types with proliferation, inflammation and stroma signatures. Inflammation signatures in combination with healthy B cell and tonsil characteristics associate with better overall survival rates, while proliferation in combination with inflammation and plasma cell characteristics worsens it. A phenotypic similarity tree is presented that reveals possible progression paths along the transcriptional dimensions. Our analysis provided a novel look on the transition range between FL and DLBCL, on DLBCL with poor prognosis showing expression patterns resembling that of Burkitt’s lymphoma and particularly on ‘double-hit’ MYC and BCL2 transformed lymphomas. Conclusions The transcriptome map provides a tool that aggregates, refines and visualizes the data collected in the MMML study and interprets them in the light of previous knowledge to provide orientation and support in current and future studies on lymphomas and on other cancer entities. KW - tumor heterogeneity KW - B cell malignancies KW - gene regulation KW - molecular subtypes KW - machine learning Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237262 VL - 11 ER - TY - JOUR A1 - Klein-Hessling, Stefan A1 - Muhammad, Khalid A1 - Klein, Matthias A1 - Pusch, Tobias A1 - Rudolf, Ronald A1 - Flöter, Jessica A1 - Qureischi, Musga A1 - Beilhack, Andreas A1 - Vaeth, Martin A1 - Kummerow, Carsten A1 - Backes, Christian A1 - Schoppmeyer, Rouven A1 - Hahn, Ulrike A1 - Hoth, Markus A1 - Bopp, Tobias A1 - Berberich-Siebelt, Friederike A1 - Patra, Amiya A1 - Avots, Andris A1 - Müller, Nora A1 - Schulze, Almut A1 - Serfling, Edgar T1 - NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells JF - Nature Communications N2 - Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions. KW - cytotoxic T cells KW - lymphocyte activation KW - signal transduction KW - gene regulation KW - immune cells KW - NFATc1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170353 VL - 8 IS - 511 ER - TY - JOUR A1 - Kim, Mia A1 - Grimmig, Tanja A1 - Grimm, Martin A1 - Lazariotou, Maria A1 - Meier, Eva A1 - Rosenwald, Andreas A1 - Tsaur, Igor A1 - Blaheta, Roman A1 - Heemann, Uwe A1 - Germer, Christoph-Thomas A1 - Waaga-Gasser, Ana Maria A1 - Gasser, Martin T1 - Expression of Foxp3 in Colorectal Cancer but Not in Treg Cells Correlates with Disease Progression in Patients with Colorectal Cancer JF - PLoS ONE N2 - Background Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results Applying our algorithm to the data, 9% of the genes were assigned as AS, while only 3% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression. KW - T cells KW - gene regulation KW - alternative splicing KW - measles virus KW - T cell receptors KW - reverse transcriptase-polymerase chain reaction KW - TCR signaling cascade KW - cell cycle and cell division Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130340 VL - 8 IS - 1 ER - TY - JOUR A1 - Gaubatz, Stefan A1 - Esterlechner, Jasmina A1 - Reichert, Nina A1 - Iltzsche, Fabian A1 - Krause, Michael A1 - Finkernagel, Florian T1 - LIN9, a Subunit of the DREAM Complex, Regulates Mitotic Gene Expression and Proliferation of Embryonic Stem Cells JF - PLoS ONE N2 - The DREAM complex plays an important role in regulation of gene expression during the cell cycle. We have previously shown that the DREAM subunit LIN9 is required for early embryonic development and for the maintenance of the inner cell mass in vitro. In this study we examined the effect of knocking down LIN9 on ESCs. We demonstrate that depletion of LIN9 alters the cell cycle distribution of ESCs and results in an accumulation of cells in G2 and M and in an increase of polyploid cells. Genome-wide expression studies showed that the depletion of LIN9 results in downregulation of mitotic genes and in upregulation of differentiation-specific genes. ChIP-on chip experiments showed that mitotic genes are direct targets of LIN9 while lineage specific markers are regulated indirectly. Importantly, depletion of LIN9 does not alter the expression of pluripotency markers SOX2, OCT4 and Nanog and LIN9 depleted ESCs retain alkaline phosphatase activity. We conclude that LIN9 is essential for proliferation and genome stability of ESCs by activating genes with important functions in mitosis and cytokinesis. KW - cell cycle KW - cell division KW - cell differentation KW - DNA-binding proteins KW - gene expression KW - gene regulation KW - gene targeting KW - microarrays KW - pluripotency Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96922 ER - TY - JOUR A1 - Dimastrogiovanni, Daniela A1 - Fröhlich, Kathrin S. A1 - Bandyra, Katarzyna J. A1 - Bruce, Heather A. A1 - Hohensee, Susann A1 - Vogel, Jörg A1 - Luisi, Ben F. T1 - Recognition of the small regulatory RNA RydC by the bacterial Hfq protein JF - eLife N2 - Bacterial small RNAs (sRNAs) are key elements of regulatory networks that modulate gene expression. The sRNA RydC of Salmonella sp. and Escherichia coli is an example of this class of riboregulators. Like many other sRNAs, RydC bears a 'seed' region that recognises specific transcripts through base-pairing, and its activities are facilitated by the RNA chaperone Hfq. The crystal structure of RydC in complex with E. coli Hfq at 3.48 angstrom resolution illuminates how the protein interacts with and presents the sRNA for target recognition. Consolidating the protein-RNA complex is a host of distributed interactions mediated by the natively unstructured termini of Hfq. Based on the structure and other data, we propose a model for a dynamic effector complex comprising Hfq, small RNA, and the cognate mRNA target. KW - Hfq KW - small RNA KW - natively unstructured protein KW - protein-RNA recognition KW - gene regulation KW - Escherichia coli-Hfq KW - SM-like protein KW - messenger-RNA KW - chaperone Hfq KW - target recognition KW - noncoding RNAs KW - interaction surfaces KW - crystal-structures KW - soluble-RNAs KW - C-Terminus Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114191 SN - 2050-084X VL - 3 IS - e05375 ER -