TY - JOUR A1 - Zapf, Ludwig A1 - Finze, Maik T1 - The crystal structure of poly[(μ \(_3\)-imidazolato-κ \(^3\) N:N:N′)(tetrahydrofuran- κ \(^1\) O)lithium(I)], C\(_7\)H\(_{11}\)LiN\(_2\)O JF - Zeitschrift für Kristallographie - New Crystal Structures N2 - C\(_7\)H\(_{11}\)LiN\(_2\)O, monoclinic, P2\(_1\)/c (no. 14), a = 8.9067(1) angstrom, b = 8.6975(1) angstrom, c = 10.2398(1) angstrom, beta = 101.900(3)degrees, V = 770.491(15) angstrom(3), Z = 4, R-gt (F) = 0.0338, wR(ref) (F\(^2\)) = 0.0925, T = 100 K. KW - acid sphingomyelinase KW - antidepressants KW - major depression KW - regulatory T cells KW - sphingolipids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260745 VL - 236 IS - 5 ER - TY - JOUR A1 - Wiese, Teresa A1 - Dennstädt, Fabio A1 - Hollmann, Claudia A1 - Stonawski, Saskia A1 - Wurst, Catherina A1 - Fink, Julian A1 - Gorte, Erika A1 - Mandasari, Putri A1 - Domschke, Katharina A1 - Hommers, Leif A1 - Vanhove, Bernard A1 - Schumacher, Fabian A1 - Kleuser, Burkard A1 - Seibel, Jürgen A1 - Rohr, Jan A1 - Buttmann, Mathias A1 - Menke, Andreas A1 - Schneider-Schaulies, Jürgen A1 - Beyersdorf, Niklas T1 - Inhibition of acid sphingomyelinase increases regulatory T cells in humans JF - Brain Communications N2 - Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3\(^+\) regulatory T-cell frequencies among CD4\(^+\) T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4\(^+\) Foxp3\(^+\) regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3\(^+\) regulatory T cell among human CD4\(^+\) T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4\(^+\) Foxp3\(^+\) regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA\(^-\) CD25\(^{high}\) effector CD4\(^+\) Foxp3\(^+\) regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4\(^+\) Foxp3\(^+\) regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4\(^+\) T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4\(^+\) T cells in humans both in vivo and in vitro. KW - acid sphingomyelinase KW - antidepressants KW - major depression KW - regulatory T cells KW - sphingolipids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259868 VL - 3 IS - 2 ER - TY - JOUR A1 - Vargas, Juan Gamboa A1 - Wagner, Jennifer A1 - Shaikh, Haroon A1 - Lang, Isabell A1 - Medler, Juliane A1 - Anany, Mohamed A1 - Steinfatt, Tim A1 - Mosca, Josefina Peña A1 - Haack, Stephanie A1 - Dahlhoff, Julia A1 - Büttner-Herold, Maike A1 - Graf, Carolin A1 - Viera, Estibaliz Arellano A1 - Einsele, Hermann A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - A TNFR2-Specific TNF fusion protein with improved in vivo activity JF - Frontiers in Immunology N2 - Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300% in vivo 5 days after treatment. Treg numbers remained as high as 200% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD. KW - agonist KW - GvHD KW - regulatory T cells KW - serum retention KW - TNF KW - TNFR2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277436 SN - 1664-3224 VL - 13 ER - TY - JOUR A1 - Uri, Anna A1 - Werner, Sandra A1 - Lühder, Fred A1 - Hünig, Thomas A1 - Kerkau, Thomas A1 - Beyersdorf, Niklas T1 - Protection of mice from acute graft-versus-host disease requires CD28 co-stimulation on donor CD4\(^{+}\) Foxp3\(^{+}\) regulatory T Cells JF - Frontiers in Immunology N2 - Acute graft-versus-host disease (aGvHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell plus T cell transplantation (allo-HSCT). In this study, we investigated the requirement for CD28 co-stimulation of donor CD4\(^{+}\) conventional (CD4\(^{+}\)CD25\(^{-}\)Foxp3\(^{-}\), Tconv) and regulatory (CD4\(^{+}\)CD25\(^{+}\)Foxp3\(^{+}\), Treg) T cells in aGvHD using tamoxifen-inducible CD28 knockout (iCD28KO) or wild-type (wt) littermates as donors of CD4\(^{+}\) Tconv and Treg. In the highly inflammatory C57BL/6 into BALB/c allo-HSCT transplantation model, CD28 depletion on donor CD4\(^{+}\) Tconv reduced clinical signs of aGvHD, but did not significantly prolong survival of the recipient mice. Selective depletion of CD28 on donor Treg did not abrogate protection of recipient mice from aGvHD until about day 20 after allo-HSCT. Later, however, the pool of CD28-depleted Treg drastically declined as compared to wt Treg. Consequently, only wt, but not CD28-deficient, Treg were able to continuously suppress aGvHD and induce long-term survival of the recipient mice. To our knowledge, this is the first study that specifically evaluates the impact of CD28 expression on donor Treg in aGvHD. Moreover, the delayed kinetics of aGvHD lethality after transplantation of iCD28KO Treg provides a novel animal model for similar disease courses found in patients after allo-HSCT. KW - co-stimulation, KW - inducible deletion KW - regulatory T cells KW - acute graft-versus-host disease KW - CD28 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158469 VL - 8 IS - 721 ER - TY - JOUR A1 - Tilstam, Pathricia V. A1 - Gijbels, Marion J. A1 - Habbeddine, Mohamed A1 - Cudejko, Celine A1 - Asare, Yaw A1 - Theelen, Wendy A1 - Zhou, Baixue A1 - Döring, Yvonne A1 - Drechsler, Maik A1 - Pawig, Lukas A1 - Simsekyilmaz, Sakine A1 - Koenen, Rory R. A1 - de Winther, Menno P. J. A1 - Lawrence, Toby A1 - Bernhagen, Jürgen A1 - Zernecke, Alma A1 - Weber, Christian A1 - Noels, Heidi T1 - Bone Marrow-Specific Knock-In of a Non-Activatable Ikkα Kinase Mutant Influences Haematopoiesis but Not Atherosclerosis in Apoe-Deficient Mice JF - PLOS ONE N2 - Background: The Ikkα kinase, a subunit of the NF-kappa B-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikk alpha mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results: Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (Ikkα(AA/AA) Apoe(-/-)) or with Ikkα(+/+) Apoe(-/-) BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in Ikkα(AA/AA) Apoe(-/-) BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from Ikkα(AA/AA) Apoe(-/-) vs Ikkα(+/+) Apoe(-/-) mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion: Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of Ikkα AA mutant BM did not affect atherosclerosis in Apoe(-/-) mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach. KW - NF-KAPPA-B KW - regulatory T cells KW - indoleamine 2,3-dioxygenase KW - dendritic cells KW - gene expression KW - increases atherosclersosis KW - receptor KW - inhibition KW - pathway KW - beta Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117450 VL - 9 IS - 2 ER - TY - JOUR A1 - Silva-Vilches, Cinthia A1 - Pletinckx, Katrien A1 - Lohnert, Miriam A1 - Pavlovic, Vladimir A1 - Ashour, Diyaaeldin A1 - John, Vini A1 - Vendelova, Emilia A1 - Kneitz, Susanne A1 - Zhou, Jie A1 - Chen, Rena A1 - Reinheckel, Thomas A1 - Mueller, Thomas D. A1 - Bodem, Jochen A1 - Lutz, Manfred B. T1 - Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion JF - PLoS ONE N2 - Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3\(^{+}\) induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT\(^{hi}\), CT\(^{lo}\)) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT\(^{hi}\) conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT\(^{lo}\)- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3\(^{+}\) iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT\(^{lo}\)- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3\(^{+}\) Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae. KW - small interfering RNAs KW - toxins KW - regulatory T cells KW - T cells KW - cytokines KW - cholera KW - cell differentiation KW - immune evasion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158244 VL - 12 IS - 7 ER - TY - JOUR A1 - Schatton, Tobias A1 - Yang, Jun A1 - Kleffel, Sonja A1 - Uehara, Mayuko A1 - Barthel, Steven R. A1 - Schlapbach, Christoph A1 - Zhan, Qian A1 - Dudeney, Stephen A1 - Mueller, Hansgeorg A1 - Lee, Nayoung A1 - de Vries, Juliane C. A1 - Meier, Barbara A1 - Beken, Seppe Vander A1 - Kluth, Mark A. A1 - Ganss, Christoph A1 - Sharpe, Arlene H. A1 - Waaga-Gasser, Ana Maria A1 - Sayegh, Mohamed H. A1 - Abdi, Reza A1 - Scharffetter-Kochanek, Karin A1 - Murphy, George F. A1 - Kupper, Thomas S. A1 - Frank, Natasha Y. A1 - Frank, Markus H. T1 - ABCB5 Identifies Immunoregulatory Dermal Cells JF - Cell Reports N2 - Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5\(^+\) DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5\(^+\) DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy. KW - mesenchymal stem cells KW - P-glycoprotein KW - regulatory T cells KW - maintain immune homeostasis KW - malignant melanoma KW - in vivo KW - skin KW - generation KW - transplant KW - tolerance Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149989 VL - 12 SP - 1564 EP - 1574 ER - TY - JOUR A1 - Prelog, Martina A1 - Hilligardt, Deborah A1 - Schmidt, Christian A. A1 - Przybylski, Grzegorz K. A1 - Leierer, Johannes A1 - Almanzar, Giovanni A1 - El Hajj, Nady A1 - Lesch, Klaus-Peter A1 - Arolt, Volker A1 - Zwanzger, Peter A1 - Haaf, Thomas A1 - Domschke, Katharina T1 - Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder? JF - PLoS ONE N2 - Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders. KW - DNA methylation KW - antidepressants KW - regulatory T cells KW - panic disorder KW - treatment guidelines KW - telomere length KW - inflammatory diseases KW - anxiety disorders Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179684 VL - 11 IS - 6 ER - TY - JOUR A1 - Pagel, Julia A1 - Twisselmann, Nele A1 - Rausch, Tanja K. A1 - Waschina, Silvio A1 - Hartz, Annika A1 - Steinbeis, Magdalena A1 - Olbertz, Jonathan A1 - Nagel, Kathrin A1 - Steinmetz, Alena A1 - Faust, Kirstin A1 - Demmert, Martin A1 - Göpel, Wolfgang A1 - Herting, Egbert A1 - Rupp, Jan A1 - Härtel, Christoph T1 - Increased Regulatory T Cells Precede the Development of Bronchopulmonary Dysplasia in Preterm Infants JF - Frontiers in Immunology N2 - Regulatory T cells (Tregs) are important for the ontogenetic control of immune activation and tissue damage in preterm infants. However, the role of Tregs for the development of bronchopulmonary dysplasia (BPD) is yet unclear. The aim of our study was to characterize CD4+ CD25+ forkhead box protein 3 (FoxP3)+ Tregs in peripheral blood of well-phenotyped preterm infants (n = 382; 23 + 0 – 36 + 6 weeks of gestational age) with a focus on the first 28 days of life and the clinical endpoint BPD (supplemental oxygen for longer than 28 days of age). In a subgroup of preterm infants, we characterized the immunological phenotype of Tregs (n = 23). The suppressive function of Tregs on CD4+CD25- T cells was compared in preterm, term and adult blood. We observed that extreme prematurity was associated with increased Treg frequencies which peaked in the second week of life. Independent of gestational age, increased Treg frequencies were noted to precede the development of BPD. The phenotype of preterm infant Tregs largely differed from adult Tregs and displayed an overall naïve Treg population (CD45RA+/HLA-DR-/Helios+), especially in the first days of life. On day 7 of life, a more activated Treg phenotype pattern (CCR6+, HLA-DR+, and Ki-67+) was observed. Tregs of preterm neonates had a higher immunosuppressive capacity against CD4+CD25- T cells compared to the Treg compartment of term neonates and adults. In conclusion, our data suggest increased frequencies and functions of Tregs in preterm neonates which display a distinct phenotype with dynamic changes in the first weeks of life. Hence, the continued abundance of Tregs may contribute to sustained inflammation preceding the development of BPD. Functional analyses are needed in order to elucidate whether Tregs have potential as future target for diagnostics and therapeutics. KW - regulatory T cells KW - Tregs KW - bronchopulmonary dysplasia KW - BPD KW - preterm infant KW - neonate KW - Foxp3 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212409 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Nono, Justin Komguep A1 - Pletinckx, Katrien A1 - Lutz, Manfred B. A1 - Brehm, Klaus T1 - Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro JF - PLoS Neglected Tropical Diseases N2 - Background: Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E. multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action. Methodology/Principal Findings: We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naive T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro. Conclusions: This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis. KW - granulosus KW - hydatid disease KW - metacestode vesicles KW - antigen-B KW - alveoar echinococcosis KW - TGF-BETA KW - regulatory T cells KW - gene expression KW - Brugia Malayi KW - TNF-alpha Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134280 VL - 6 IS - 2 ER -