TY - THES A1 - Matuschek, Anja T1 - Characterization of tolerogenic rat bone marrow-derived dendritic cells and regulatory T cells T1 - Charakterisierung tolerogener dendritischer Knochenmarkszellen und regulatorischer T-Lymphozyten aus der Ratte N2 - Tolerogene Dendritische Zellen (DZ) und regulatorische T-Lymphozyten (Treg) verfügen über die Fähigkeit, destruktive Immunantworten zu verhindern. Die Hoffnung besteht, solche Zellen in naher Zukunft für therapeutische Zwecke einzusetzen, um z. B. Immunantworten nach Transplantation, aber auch bei Autoimmunität und Allergie antigenspezifisch zu supprimieren. Zum jetzigen Zeitpunkt ist die Generierung solcher Zellen aufwendig und noch nicht für die klinische Routine geeignet. Zudem sind die Mechanismen noch wenig verstanden, wie diese Zellen eine gewünschte Immunhemmung in vivo auszulösen und wie der möglichen Gefahr einer zu starken Immunhemmung zu begegnen ist. Das Kleinnagermodell Ratte ist für die biomedizinische Forschung noch immer von großer Bedeutung, umso überraschender ist es, dass insbesondere tolerogene DZ und Treg in diesem Modell bisher nur unzureichend untersucht wurden. Das Ziel der Arbeit war deshalb, diese Immunzellen umfassend zu charakterisieren und ihre Funktion auf das Immunsystem zu untersuchen. Tolerogene DZ wurden mit GM-CSF und IL-4 aus Knochenmarkvorläuferzellen generiert (= IL-4 DC). Der Anteil an natürlich vorkommenden Treg mit einem Phänotyp CD4posCD25posFoxp3pos umfasst ca. 5-8% der peripheren naiven CD4pos TLymphozyten. Die Charakterisierung der IL-4 DC zeigte im Vergleich zu reifen DZ der Milz eine bis zu 26-fach geringere Expression von Oberflächenmolekülen wie MHC-Klasse II Molekül, CD80, CD86, ICAM-1 und CD25. Diese geringe Expression änderte sich auch nicht, wenn die Zellen verschiedensten Reifungssignalen wie das Replattieren,LPS, TNF-α und CD40L ausgesetzt wurden. IL-4 DC verfügen somit über einen robusten und gegenüber Reifungssignalen überaus resistenten Phänotyp. IL-4 DC nehmen Antigene durch Endozytose auf und sind unfähig, sowohl naive TLymphozyten zu aktivieren, als auch antigenspezifische T-Lymphozyten zu restimulieren. Zudem sind sie in der Lage, die Aktivierung naiver T-Lymphozyten und die Restimulierung antigenspezifischer T-Lymphozyten durch reife Milz-DZ zu bzw. zu verzögern. Dabei verringerte sich die Proliferation der TLymphozyten um bis zu 95%. Diese Beeinflussung der Proliferation ist nach Zugabe der IL-4 DC bereits innerhalb von 24 Stunden zu messen. Die verringerte Aktivierung geht zu dem mit einer verringerten Zytokinausschüttung (IL-2 um 49% und IFN-γ um 92%) einher. Die inhibitorischen Eigenschaften der IL-4 DC scheinen aber nicht ausschließlich auf der verringerten Expression kostimulatorischer Moleküle zu beruhen. Der Nachweis der beiden inhibitorischen Oberflächenmoleküle PD-L1 und PD-L2 auf IL-4 DC lässt ebenfalls eine Bedeutung dieser Moleküle bei der Vermittlung inhibierender Signale vermuten. Auch die suppressive Wirkung löslicher Faktoren wurde in der vorliegenden Arbeit gezeigt. Überstände einer 24-stündigen Kultur mit einer Million IL-4 DC hemmten die Aktivierung naiver T-Lymphozyten durch reife Milz-DZ um etwa 90%. Für diese Immunhemmung scheint das in diesen Überständen nachgewiesene Zytokin TGF-β (bis 300 pg/ml) verantwortlich zu sein. Im Vergleich dazu wiesen Überstände reifer Milz-DZ, die nicht die Aktivierung von T-Lymphozyten hemmten, eine TGF-β Konzentrationen von bis 100 pg/ml auf. Im Gegensatz dazu scheint zelltoxisches Stickstoffmonoxid nur eine geringe Rolle bei der Inhibierung der T-Zellproliferation zu spielen. Die Zugabe des NO Synthase-Inhibitors NMMA verringerte zwar den Anteil an NO um ca. 50%, doch führte dies nicht zu einer Steigerung der Proliferation von T-Lymphozyten. IL-4 DC sind zwar nicht in der Lage, T-Lymphozyten zur Proliferation zu bringen, doch bedeutet dies nicht, dass keinerlei Veränderungen auf molekularer Ebene festzustellen wären. So sind T-Lymphozyten nach ihrer Inkubation mit IL-4 DC nicht in der Lage, in Gegenwart von reifen Milz-DZ zu proliferieren. Dieser anergische Zustand wurde nach Zugabe von IL-2 aufgehoben. Zudem können diese TLymphozyten nach ihrer Inkubation mit IL-4 DC die Aktivierung naïver TLymphozyten hemmen. Naïve und aktivierte T-Lymphozyten können dies nicht. Diese Beobachtung, die auf eine Induktion von Treg schließen lässt, wurde genauer untersucht. In der Tat zeigten durchflusszytometrische Analysen eine 1,6-fach verstärkte Expansion von CD4posCD25posFoxp3pos T-Lymphozyten aus natürlich vorkommenden Treg in Gegenwart von IL-4 DC. Dabei erfolgte die Expansion von CD4posCD25posFoxp3pos T-Lymphozyten unabhängig vom Reifegrad der DZ. So waren auch reife Milz-DZ dazu in der Lage, die Zahl der natürlich vorkommenden Treg zu erhöhen. Doch wiesen diese mit Milz-DZ inkubierten Treg einen verminderten inhibitorischen Effekt auf. Im Gegensatz dazu waren die mit IL-4 DC inkubierten Treg in der Lage die Aktivierung naiver T-Lymphozyten zu hemmen. In dieser Arbeit wurde gezeigt, dass sich das regulatorische Potential von DZ nicht ausschließlich vom Phänotyp bzw. ihrem Reifegrad ableiten lässt, sondern dass hierzu auch ihre funktionellen Eigenschaften zu untersuchen sind. Die Induktion von Treg mit suppressiven Eigenschaften durch in vitro generierte tolerogene IL-4 DC könnte ein wichtiger Mechanismus zur Aufrechterhaltung der peripheren Toleranz darstellen. Vor einer klinischen Umsetzung sind aber noch weitergehende Untersuchungen notwendig, um das Zusammenspiel zwischen tolerogenen DZ und Treg zu verstehen, aber auch um die Auswirkungen eines Transfers großer Mengen regulatorischer Zellen auf das Immunsystem des Empfängers zu untersuchen. N2 - Tolerogenic dendritic cells (DC) and regulatory T (Treg) cells are able to prevent destructive immune responses. There is reason to hope that it may soon be possible to use DC and Treg cells to suppress immune responses antigen-specific, not only after transplantation, but also in the case of autoimmunity and allergy. At the moment, the generation of such cell types is very time-consuming and not suitable for clinical routine. In addition, it is not yet fully understood how these cells elicit a desired protective immune response in vivo and how the risks of an excessive immune suppression can be managed. The rat is one of the most important animal models in biomedical research. It is therefore surprising that tolerogenic DC and Treg cells in particular have not been more thoroughly investigated in this model. Thus, the aim of the present study was to systematically characterize these immune cells and investigate their impact on the immune system. Tolerogenic DC were generated from bone marrow precursors cultured with GM-CSF and IL-4 (= IL-4 DC). The proportion of naturally occurring Treg cells with a CD4posCD25posFoxp3pos phenotype comprises approximately 5-8% of the peripheral CD4pos T cells. The characterization of IL-4 DC revealed an up to 26-fold reduced expression of surface molecules such as MHC class II molecules, CD80, CD86, ICAM-1 and CD25 in comparison to mature splenic DC (S-DC). This low expression did not change when the cells where stimulated with different maturation-inducing signals such as replating, LPS, TNF- α and CD40L. Thus, these cells possess a robust phenotype resistant to maturation-inducing stimuli. IL-4 DC take up antigen via endocytosis and are not able to activate naïve T cells or to restimulate antigen-specific T cells. Furthermore, they are able to inhibit and prolongate mature S-DC induced T cell proliferation as well as mature S-DC induced restimulation of antigen-specific T cells, respectively. Thereby, the T cell proliferation was reduced up to 95%. This strong inhibitory effect was mediated within 24 hours in association with a reduced cytokine production (IL-2 about 49% and IFN-γ about 92%). The inhibitory properties of IL-4 DC don´t seem to be caused exclusively by the reduced expression of co-stimulatory molecules. In this study, the detection of the inhibitory molecules PD-L1 and PD-L2 on IL-4 DC suggests they have an impact on mediating inhibitory signals to the T cells. In addition, a suppressive effect of soluble factors was shown. The supernatant of one million IL-4 DC, collected after a 24 hour culture, suppressed mature S-DC induced proliferation of naïve T cells by about 90%. TGF-β, which was detected in the supernatant (up to 300 pg/ml), appears to be the causing soluble factor for this immune inhibition. By contrast, the supernatants of mature S-DC, which did not inhibit the activation of T cells, showed a TGF-β concentration of only about 100 pg/ml. The cytotoxic nitric oxide does not contribute to the IL-4 DC-mediated inhibition of T cell proliferation. The NO synthase inhibitor NMMA reduced the amount of NO by about 50%, but the decreased NO levels did not influence T cell proliferation. Indeed, IL-4 DC are not able to induce T cell proliferation, but this doesn´t mean that there is no change on the molecular level. For instance, T cells co-cultured with IL-4 DC during a first culture are not able to proliferate in the presence of mature S-DC during a second culture. This anergic-like state, however, could be abolished by adding exogenous IL-2. In addition, T cells co-cultured with IL-4 DC are able to inhibit the activation of naïve T cells. Naïve and activated T cells were not able to inhibit the mature S-DC induced T cell proliferation. This observation suggests the induction of Treg cells and was investigated in more detail. Indeed, flow cytometric analysis showed a 1.6-fold expansion of CD4posCD25posFoxp3pos T cells from naturally occurring Treg cells in the presence of IL-4 DC. Thereby, the expansion of CD4posCD25posFoxp3pos T cells occurs independently of the maturation state of DC. Both immature IL-4 DC as well as mature S-DC were able to expand the percentage of naturally occurring Treg cells. However, Treg cells pre-incubated with mature S-DC demonstrated a diminished inhibitory effect compared to Treg cells pre-incubated with IL-4 DC. Treg cells pre-incubated with IL-4 DC were able to inhibit the activation of naïve T cells. In this study it was shown that the regulatory potential of DC cannot be deduced solely by their phenotype or maturation state. Other factors, such as functional properties, need to taken into consideration, too. The induction of Treg cells with suppressive properties induced by in vitro generated tolerogenic IL-4 DC might provide an important mechanism for the maintenance of peripheral tolerance. However, for clinical application further investigation is necessary, not only to understand the interactions between tolerogenic DC and Treg cells, but also to investigate the impact of the transfer of a larger quantity of regulatory cells on the immune system of the recipient. KW - Dendritische Zelle KW - T-Lymphozyt KW - Immuntoleranz KW - Allogene Zelle KW - Transforming Growth Factor beta KW - tolerogen KW - Dendritische Zelle KW - regulatorische T-Zellen KW - allogen KW - TGF-ß KW - tolerogenic KW - dendritic cell KW - regulatory T cells KW - allogenic KW - TGF-ß Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51708 ER - TY - THES A1 - Lutz, Marion T1 - Effects of nerve growth factor on TGF-Beta,Smad signal transduction in PC12 cells T1 - Einfluß von NGF auf die TGF-ß/Smad Signaltransduktion in PC12 Zellen N2 - Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that is engaged in regulating versatile cellular processes that are pivotal for development and homeostasis of most tissues in multicellular organisms. TGF-ß signal transduction is initially propagated by binding of TGF-ß to transmembrane serine/threonine kinase receptors, designated TßRI and TßRII. Upon activation, the receptors phosphorylate Smad proteins which serve as downstream mediators that enter the nucleus and finally trigger transcriptional responses of specific genes. During the past years, it became evident that signaling cascades do not proceed in a linear fashion but rather represent a complex network of numerous pathways that mutually influence each other. Along these lines, members of the TGF-ß superfamily are attributed to synergize with neurotrophins. Together, they mediate neurotrophic effects in different populations of the nervous system, suggesting that an interdependence exists between TGF-ßs on the one hand and neurotrophins on the other. In the present work, the crosstalk of NGF and TGF-ß/Smad signaling pathways is characterized in rat pheochromocytoma cells (PC12) which are frequently used as a model system for neuronal differentiation. PC12 cells were found to be unresponsive to TGF-ß due to limiting levels of TßRII. However, stimulation with NGF results in initiation of Smad-mediated transcription independent of TGF-ß. Binding of NGF to functional TrkA receptors triggers activation of Smad3. This NGF-dependent Smad activation occurs by a mechanism which is different from being induced by TGF-ß receptors in that it provokes a different phosphorylation pattern of R-Smads. Together with an inferior role of TßRI, Smad3 is proposed to serve as a substrate for cellular kinases other than TßRI. Based on the presented involvement of components of both, the MAPK/Erk and the TAK1/MKK6 cascade, signal mediators of these pathways rank as candidates to mediate direct activation of Smad3. Smad3 is subsequently translocated to the nucleus and activates transcription in a Smad4-dependent manner. Negative regulation is provided by Smad7 which was found to act as a potent inhibitor of Smad signaling not only in TGF-ß- but also in NGF-mediated cascades. The potential of NGF to activate the Smad pathway independent of TGF-ß might be of special importance in regulating expression of genes that are essential for the development and function of neuronal cells or of other NGF-sensitive cells, in particular those which are TGF-ß-resistant. N2 - Das multifunktionelle Zytokin TGF-ß ist an der Regulation vielfältiger zellulärer Prozesse beteiligt. Diese sind für die Entwicklung und die Homöostase der meisten Gewebe vielzelliger Organismen essenziell. Die TGF-ß Signaltransduktionskaskade wird durch die Bindung des Zytokins an spezifische transmembrane Serin/Threonin-Kinase Rezeptoren (TßRI und TßRII) initiiert. Eine solche Rezeptoraktivierung führt zur Phosphorylierung von Smad Proteinen. Diese dienen der Signalweiterleitung, indem sie anschließend in den Zellkern translozieren und dort die Transkription spezifischer Zielgene modulieren. In den letzten Jahren wurde deutlich, dass Signalkaskaden nicht nur linear weitergeleitet werden, sondern dass vielmehr ein komplexes Netzwerk aus zahlreichen, sich gegenseitig regulierenden, Signalwegen existiert. In diesem Zusammenhang wird auch den Mitgliedern der TGF-ß Superfamilie zugeschrieben, dass sie mit Neurotrophinen kooperieren und somit deren Effekte in unterschiedlichen neuronalen Zellpopulationen unterstützen. In der vorliegenden Arbeit wurde der "crosstalk" von NGF- und TGF-ß/Smad-Signalwegen charakterisiert. Als Zellsystem dienten dazu Ratten Pheochromocytoma Zellen (PC12), die weithin als Modellsystem für neuronale Differenzierung verwendet werden. Basierend auf der Expression limitierender Mengen an TßRII, zeigen PC12 Zellen keine Responsivität gegenüber TGF-ß. Stimulation mit NGF hingegen resultiert - unabhängig von TGF-ß - in der Initiation von Smad-vermittelter Transkription. Die initiale Bindung von NGF an TrkA Rezeptoren führt zur Aktivierung von Smad3. Diese NGF-induzierte Smad-Aktivierung unterscheidet sich von der durch TGF-ß-Rezeptoren initiierten Aktivierung hinsichtlich des Phosphorylierungsmusters der R-Smads. Da weiterhin gezeigt werden konnte, dass die TGF-ß Rezeptoren für NGF-induzierte Ereignisse eine untergeordnete Rolle spielen, wird angenommen, dass Smad3 ein Substrat für andere zelluläre Kinasen als TßRI ist. Die hier nachgewiesene Beteiligung der MAPK/Erk Kaskade sowie des TAK1/MKK6 Signalwegs an der Weiterleitung des NGF-Signals machen deren Signalmoleküle zu potenziellen Kinasen für die direkte Aktivierung von Smad3. Im Anschluß daran erfolgt die nukleäre Translokation des Smad3 und spezifische Promotoraktivierungen unter Beteiligung von Smad4. Abschließend konnte gezeigt werden, dass das Smad7 Protein, nicht nur nach TGF-ß- sondern auch nach NGF-Stimulation als effektiver Inhibitor der Smad Signalkaskade wirkt. Die bislang unbekannte Fähigkeit, den Smad-Signaltransduktionsweg unabhängig von TGF-ß zu aktivieren, schreibt NGF eine besondere Bedeutung für die Genregulation in neuronalen Zellpopulationen oder anderen NGF-sensitiven - insbesondere TGF-ß-resistenten - Zellen zu. KW - Transforming growth factor beta KW - Nervenwachstumsfaktor KW - Signaltransduktion KW - TGF-ß KW - NGF KW - Signaltransduktion KW - TGF-ß KW - NGF KW - signal transduction KW - crosstalk Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4248 ER -