TY - THES A1 - van Eeuwijk, Judith Martina Maria T1 - Studies on thrombopoiesis and spleen tyrosine kinase-mediated signaling in platelets T1 - Untersuchungen der Thrombopoese und der spleen tyrosine kinase-vermittelten Signaltransduktion in Thrombozyten N2 - In mammals, anucleate blood platelets are constantly produced by their giant bone marrow (BM) progenitors, the megakaryocytes (MKs), which originate from hematopoietic stem cells. Megakaryopoiesis and thrombopoiesis have been studied intensively, but the exact mechanisms that control platelet generation from MKs remain poorly understood. Using multiphoton intravital microscopy (MP-IVM), thrombopoiesis and proplatelet formation were analyzed in the murine BM in real-time and in vivo, identifying an important role for several proteins, including Profilin1, TRPM7 and RhoA in thrombopoiesis. Currently, it is thought that blood cell precursors, such as MKs, migrate from the endosteal niche towards the vascular niche during maturation. In contrast to this paradigm, it was shown that MKs are homogeneously distributed within the dense BM blood vessel network, leaving no space for vessel-distant niches. By combining results from in vivo MP-IVM, in situ light-sheet fluorescence microscopy (LSFM) of the intact BM as well as computational simulations, surprisingly slow MK migration, limited intervascular space and a vessel-biased MK pool were revealed, contradicting the current concept of directed MK migration during thrombopoiesis. Platelets play an essential role in hemostasis and thrombosis, but also in the pathogenesis of ischemic stroke. Ischemic stroke, which is mainly caused by thromboembolic occlusion of brain arteries, is among the leading causes of death and disability worldwide with limited treatment options. The platelet collagen receptor glycoprotein (GP) VI is a key player in arterial thrombosis and a critical determinant of stroke outcome, making its signaling pathway an attractive target for pharmacological intervention. The spleen tyrosine kinase (Syk) is an essential signaling mediator downstream of GPVI, but also of other platelet and immune cell receptors. In this thesis, it was demonstrated that mice lacking Syk specifically in platelets are protected from arterial thrombus formation and ischemic stroke, but display unaltered hemostasis. Furthermore, it was shown that mice treated with the novel, selective and orally bioavailable Syk inhibitor BI1002494 were protected in a model of arterial thrombosis and had smaller infarct sizes and a significantly better neurological outcome 24 h after transient middle cerebral artery occlusion (tMCAO), also when BI1002494 was administered therapeutically, i.e. after ischemia. These results provide direct evidence that pharmacological Syk inhibition might become a safe therapeutic strategy. The T cell receptor  chain-associated protein kinase of 70 kDA (Zap-70) is also a spleen tyrosine kinase family member, but has a lower intrinsic activity compared to Syk and is expressed in T cells and natural killer (NK) cells, but not in platelets. Unexpectedly, arterial thrombus formation in vivo can occur independently of Syk kinase function as revealed by studies in Sykki mice, which express Zap-70 under the control of intrinsic Syk promoter elements. N2 - In Säugetieren werden kernlose Thrombozyten durch ihren riesigen Knochenmark- (KM-) Vorläuferzellen, die Megakaryozyten (MK), die von hämatopoetischen Stammzellen stammen, ständig produziert. Megakaryopoese und Thrombopoese wurden schon intensiv untersucht, aber die genauen Mechanismen, die die Thrombozytenproduktion aus MK kontrollieren, bleiben weitgehend unverstanden. Mittels Multiphotonen-Intravitalmikroskopie (MP-IVM) wurden Thrombopoese und Proplättchenbildung im murinen KM in Echtzeit in vivo untersucht. Dadurch wurde eine wichtige Rolle für die Proteine Profilin1, TRPM7 und RhoA in der Thrombopoese identifiziert. Derzeit wird angenommen, dass Blutzellvorläufer, wie MK, während der Reifung von der endostalen Nische in Richtung der Gefäßnische migrieren. Im Gegensatz zu diesem Paradigma wurde hier gezeigt, dass MK homogen innerhalb des dichten KM Blutgefäßnetzes verteilt sind, so dass kein Raum für Gefäß-ferne Nischen besteht. Durch Ergebnisse von in vivo MP-IVM, in situ Licht-Blatt-Fluoreszenzmikroskopie (LSFM) des intakten KM sowie Computersimulationen wurden eine überraschend langsame MK-Migration, ein begrenzter intervaskulärer Raum und eine asymmetrische MK-Verteilung gezeigt, was im Widerspruch zum derzeitig akzeptierten Konzept der gerichteten MK-Migration während der Thrombopoese steht. Die Thrombozyten spielen eine wesentliche Rolle nicht nur bei der Hämostase und Thrombose, sondern auch in der Pathogenese des ischämischen Schlaganfalls. Der ischämische Schlaganfall, der vor allem durch einen thromboembolischen Verschluss von Gehirnarterien verursacht wird, ist eine der häufigsten Ursachen für Tod und Behinderung weltweit und die Behandlungsmöglichkeiten sind sehr eingeschränkt. Der thrombozytäre Kollagenrezeptor Glykoprotein (GP) VI ist ein wichtiger Faktor in der arteriellen Thrombose und trägt entscheidend zur Pathogenese des ischämischen Schlaganfalls bei, sodass dessen Signalweg ein attraktives Ziel für pharmakologische Interventionen darstellen könnte. Die spleen tyrosine kinase (Syk) ist ein wichtiges Molekül im GPVI-Signalweg, aber auch in den Signalkaskaden von anderen Thrombozyten- und Immunzellrezeptoren. Es wurde nachgewiesen, dass Mäuse mit einer thrombozytären Syk-Defizienz, vor arterieller Thrombusbildung und ischämischem Schlaganfall geschützt sind, aber unveränderte Hämostase zeigen. Darüber hinaus wurde gezeigt, dass Mäuse, die mit dem neuartigen, selektiven und oral bioverfügbaren Syk-Inhibitor BI1002494 behandelt wurden, geschützt sind in einem Modell der arteriellen Thrombose. Auch hatten sie kleinere Infarkte und eine deutlich bessere neurologische Funktion 24 Stunden nach der transienten Arteria cerebri media Okklusion (tMCAO), auch wenn BI1002494 therapeutisch, d.h. nach der Ischämie, verabreicht wurde. Diese Ergebnisse deuten darauf hin, dass die pharmakologische Hemmung von Syk eine sichere therapeutische Strategie bei Schlaganfall sein könnte. Der T-Zell Rezeptor -chain-associated protein kinase of 70 kDa (Zap-70) ist auch ein spleen tyrosine kinase-Familienmitglied, hat aber eine geringere intrinsische Aktivität im Vergleich zu Syk und wird in T-Zellen und natural killer (NK) Zellen exprimiert, nicht aber in Thrombozyten. Studien in Sykki Mäusen, die unter der Kontrolle der intrinsischen Syk Promotorelemente Zap-70 exprimieren, ergaben, dass die arterielle Thrombusbildung in vivo unabhängig von der Syk-Kinasefunktion stattfinden kann. KW - Thrombose KW - Megakaryozyt KW - Thrombopoese KW - Mikroskopie KW - Hämostase KW - Thrombosis KW - Megakaryocyte KW - Hemostasis KW - Microscopy KW - Thrombopoiesis KW - Platelet KW - Ischemic stroke KW - Spleen tyrosine kinase Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142933 ER - TY - THES A1 - Pozgajova, Miroslava T1 - Studies on formation and stabilization of pathological thrombi in vivo T1 - Studien von formation und stabilizierung den pathologischen Thrombus in vivo N2 - Platelet activation and adhesion resulting in thrombus growth is essential for normal hemostasis, but can lead to irreversible, life-threatening vessel occlusion. In the current study, the contribution of platelet integrins, activation receptors and the contact system of blood coagulation in such pathological conditions was investigated in mice. N2 - Plättchenaktivierung, -adhäsion und nachfolgende Thrombusbildung ist ein für die Hämostase essentieller Prozess, der jedoch zu irreversiblem lebensbedrohlichen Gefäßverschluss führen kann. In der vorliegenden Arbeit wurde die Rolle von Thrombozyten-Integrinen, aktivierenden Rezeptoren, sowie dem Kontaktsystem der Koagulation unter pathologischen Bedingungen im Maussystem untersucht. KW - Thrombose KW - Platelet activating Factor KW - In vivo KW - Thrombose KW - Plätchen aktivierung KW - in vivo Modelle KW - Thrombosis KW - Platelet activation KW - in vivo models Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16784 ER - TY - THES A1 - Pleines, Irina T1 - The role of the Rho GTPases Rac1 and Cdc42 for platelet function and formation T1 - Die Rolle der Rho GTPasen Rac1 und Cdc42 in Thrombozytenfunktion und -bildung N2 - Platelet activation induces cytoskeletal rearrangements involving a change from discoid to spheric shape, secretion, and eventually adhesion and spreading on immobilized ligands. Small GTPases of the Rho family, such as Rac1 and Cdc42, are known to be involved in these processes by facilitating the formation of lamellipodia and filopodia, respectively. This thesis focuses on the role Rac1 and Cdc42 for platelet function and formation from their precursor cells, the megakaryocytes (MKs), using conditional knock-out mice. In the first part of the work, the involvement of Rac1 in the activation of the enzyme phospholipase (PL) C2 in the signaling pathway of the major platelet collagen receptor glycoprotein (GP) VI was investigated. It was found that Rac1 is essential for PLC2 activation independently of tyrosine phosphorylation of the enzyme, resulting in a specific platelet activation defect downstream of GPVI, whereas signaling of other activating receptors remains unaffected. Since Rac1-deficient mice were protected from arterial thrombosis in two different in vivo models, the GTPase might serve as a potential target for the development of new drugs for the treatment and prophylaxis of cardio- and cerebrovascular diseases. The second part of the thesis deals with the first characterization of MK- and platelet-specific Cdc42 knock-out mice. Cdc42-deficient mice displayed mild thrombo-cytopenia and platelet production from mutant MKs was markedly reduced. Unexpectedly, Cdc42-deficient platelets showed increased granule content and release upon activation, leading to accelerated thrombus formation in vitro and in vivo. Furthermore, Cdc42 was not generally required for filopodia formation upon platelet activation. Thus, these results indicate that Cdc42, unlike Rac1, is involved in multiple signaling pathways essential for proper platelet formation and function. Finally, the outcome of combined deletion of Rac1 and Cdc42 was studied. In contrast to single deficiency of either GTPase, platelet production from double-deficient MKs was virtually abrogated, resulting in dramatic macrothrombocytopenia in the animals. Formed platelets were largely non-functional leading to a severe hemostatic defect and defective thrombus formation in double-deficient mice in vivo. These results demonstrate for the first time a functional redundancy of Rac1 and Cdc42 in the hematopoietic system. N2 - Umstrukturierungen des Zytoskeletts spielen eine bedeutende Rolle bei der Aktivierung von Thrombozyten und sind in diesem Zusammenhang unerlässlich für Formänderung, Sekretion, sowie für Adhäsion und Ausbreitung auf immobilisierten Adhäsionsproteinen. Es wird vermutet, dass kleine GTPasen der Rho-Proteinfamilie, wie z.B. Rac1 und Cdc42, maßgeblich an diesen Prozessen beteiligt sind, indem sie die Bildung von Lamellipodien bzw. Filopodien bewirken. Die hier vorliegende Dissertation beschäftigt sich mit der Funktion von Rac1 und Cdc42 sowohl für die Aktivierung von Thrombozyten, als auch für deren Neubildung aus ihren Vorläuferzellen, den Megakaryozyten (MKs). Zu diesem Zweck wurden konditionale Knock-out-Mäuse generiert und in vitro und in vivo analysiert. Der erste Teil der Arbeit beinhaltete die Untersuchung der Rolle von Rac1 im Signalweg des wichtigsten Thrombozyten-Kollagen-Rezeptors, Glykoprotein (GP) VI, dessen Stimulation zur Aktivierung des Enzyms Phospholipase 2 (PLC2) führt. Es konnte gezeigt werden, dass Rac1 notwendig für PLC2-Aktivierung ist, und zwar unabhängig von der simultan stattfindenden Tyrosin-Phosphorylierung des Enzyms. Dies führte dazu, dass in Rac1-defizienten Thrombozyten spezifisch der GPVI-Signalweg blockiert war, während die Aktivierung durch andere Rezeptoren unverändert funktionierte. Da Rac1-defiziente Mäuse vor arteriellem Gefäßverschluss (Thrombose) in zwei verschiedenen in vivo Modellen geschützt waren, könnte Rac1 einen potenziellen Angriffspunkt für die Entwicklung neuer antithrombotisch wirksamer Medikamente darstellen. Im zweiten Teil der Dissertation wurden erstmals die Auswirkungen eines MK- und Thrombozyten-spezifischen Cdc42-Knock-outs charakterisiert. Cdc42-defiziente Mäuse zeigten eine leichte Thrombozytopenie und die Neubildung von Thrombozyten aus defizienten MKs war merklich beeinträchtigt. Entgegen aller Erwartungen waren sowohl Inhalt, als auch Freisetzung von Granula aus Cdc42-defizienten Thrombozyten stark erhöht, was zu beschleunigter Thrombusbildung in vitro und Gefäßverschluss in vivo führte. Überdies war Cdc42 generell nicht essentiell für die Ausbildung von Filopodien nach Thrombozytenaktivierung. Diese Ergebnisse deuten darauf hin, dass Cdc42 an einer Vielzahl von Signalwegen beteiligt ist, welche für die korrekte Bildung und Funktion von Thrombozyten unabdingbar sind. Der letzte Teil der Arbeit beschäftigte sich mit den Auswirkungen einer Doppel-defizienz von Rac1 und Cdc42. Im Gegensatz zur jeweiligen Einfachdefizienz war die Bildung von Thrombozyten aus doppeldefizienten MKs fast komplett blockiert, was eine stark ausgeprägte Makrothrombozytopenie in den betroffenen Tieren zur Folge hatte. Die wenigen gebildeten Thrombozyten waren in ihrer Funktion stark beeinträchtigt. Dies führte zusammen mit den extrem niedrigen Thrombozytenzahlen dazu, dass in doppeldefizienten Mäusen sowohl Hämostase als auch Thrombusbildung defekt waren. Diese Resultate zeigen erstmals eine funktionelle Redundanz von Rac1 und Cdc42 im hämatopoetischen System. KW - Thrombose KW - Rho GTPasen KW - Thrombozyt KW - platelet KW - Rho GTPase KW - platelet KW - Rho GTPase KW - Thrombosis Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48572 ER - TY - THES A1 - Brown, Helena Charlotte T1 - Investigating the role of the platelet receptor C-type lectin-like receptor 2 in models of thrombosis T1 - Untersuchungen zur Rolle des Thrombozytenrezeptors CLEC-2 (C- type lectin-like receptor 2) in Thrombosemodellen N2 - Platelets have a key physiological role in haemostasis however, inappropriate thrombus formation can lead to cardiovascular diseases such as myocardial infarction or stroke. Although, such diseases are common worldwide there are comparatively few anti-platelet drugs, and these are associated with an increased risk of bleeding. Platelets also have roles in thrombo-inflammation, immuno-thrombosis and cancer, in part via C-type lectin-like receptor 2 (CLEC-2) and its ligand podoplanin. Although CLEC-2 contributes to these diseases in mice, as well as to thrombus stability, it is unclear whether CLEC-2 has similar roles in humans, particularly as human CLEC-2 (hCLEC-2) cannot be investigated experimentally in vivo. To investigate hCLEC-2 in vivo, we generated a humanised CLEC-2 mouse (hCLEC-2KI) model, as well as a novel monoclonal antibody, HEL1, that binds to a different site than an existing antibody, AYP1. Using these antibodies, we have provided proof of principle for the use of hCLEC-2KI mice to test potential therapeutics targeting hCLEC-2, and shown for the first time that hCLEC-2 can be immunodepleted, with little effect on haemostasis. However, our results have also suggested that there are species differences in the role of CLEC-2 in arterial thrombosis. We further confirmed this using human blood where blocking CLEC-2 ligand binding had no effect on thrombosis, whereas we confirmed a minor role for mouse CLEC-2 in thrombus stability. We also investigated the effect of blocking CLEC-2 signalling using the Bruton’s tyrosine kinase inhibitor PRN473 on CLEC-2 mediated immuno-thrombosis in a Salmonella typhimurium infection model. However, no effect on thrombosis was observed suggesting that CLEC-2 signalling is not involved. Overall, our results suggest that there may be differences in the role of human and mouse CLEC-2, at least in arterial thrombosis, which could limit the potential of CLEC-2 as an anti-thrombotic target. However, it appears that the interaction between CLEC-2 and podoplanin is conserved and therefore CLEC-2 could still be a therapeutic target in immuno-thrombosis, thrombo-inflammation and cancer. Furthermore, any potential human specific therapeutics could be investigated in vivo using hCLEC-2KI mice. N2 - Thrombozyten sind ein wichtiger Bestandteil der Hämostase, können allerdings durch die Bildung eines Blutgerinnsels auch kardiovaskuläre Krankheitsbilder wie Myokardinfarkte oder Schlaganfälle hervorrufen. Obwohl diese Erkrankungen weltweit zu den führenden Todesursachen zählen, gibt es vergleichsweise wenig Thrombozyteninhibitoren und die bislang verfügbaren Wirkstoffe gehen mit einem erhöhten Blutungsrisiko einher. Darüber hinaus spielen Thrombozyten auch bei thrombo-inflammatorischen oder malignen Erkrankungen eine Rolle und sind maßgeblich an Entzündungs-vermittelten Thrombosen (Immunothrombosen) beteiligt. Daten aus Mausmodellen legen nahe, dass die Interaktion zwischen dem Thrombozytenrezeptor CLEC-2 (C-type lectin-like receptor 2) und seinem Liganden Podoplanin von Bedeutung für diese Krankheitsbilder, und die Thrombusstabilität ist. Allerdings ist bislang unklar, ob CLEC-2 im Menschen eine ähnliche Rolle spielt, da die Rolle des menschlichen CLEC-2 (hCLEC-2) in diesen Prozessen bislang nicht experimentell in vivo erforscht werden kann. Um hCLEC-2 in vivo zu erforschen, haben wir Mäuse generiert, die humanes CLEC-2 exprimieren (hCLEC-2KI), sowie einen neuen, monoklonalen Antikörper (HEL1) entwickelt, der an eine andere Bindungsstelle als der zuvor generierter Antikörper (AYP1) bindet. Mit Hilfe dieser Antikörper haben wir erstmalig gezeigt, dass hCLEC-2KI Mäuse geeignet sind, um potenzielle Therapeutika zu testen, die auf hCLEC-2 abzielen. Des Weiteren konnten wir erstmalig zeigen, dass auch hCLEC-2 immunodepletiert werden kann und dass der Verlust des Rezeptors in zirkulierenden Thrombozyten die Hämostase nur minimal beeinträchtigt. Allerdings deuten unsere Ergebnisse auch darauf hin, dass es hinsichtlich der Bedeutung CLEC-2 für die arterielle Thrombose artspezifische Unterschiede gibt: Während Maus CLEC-2 zur Stabilität der Thromben beiträgt, hatte die Blockade der Ligandenbindungsstelle von hCLEC-2 keinen Einfluss auf Thrombose. Des Weiteren wurde mit Hilfe des Bruton’s tyrosine kinase Inhibitors PRN473 der Effekt einer Blockierung des CLEC-2 Signalwegs auf die durch CLEC-2 hervorgerufene Immuno-Thrombose in einem Salmonella typhimurium Infektionsmodel erforscht. Da jedoch keine Effekte nachgewiesen werde konnten, schlussfolgern wir, dass der CLEC-2 Signalweg nicht in diesen Prozess involviert ist. Insgesamt deuten unsere Ergebnisse darauf hin, dass es Unterschiede in der Rolle von CLEC-2 zwischen Mensch und Maus gibt, zumindest im Kontext der arteriellen Thrombose, was das Potenzial von CLEC-2 als antithrombotisches Ziel einschränken könnte. Da allem Anschein nach die Interaktion zwischen CLEC-2 und Podoplanin konserviert ist, könnte CLEC-2 dennoch als Therapeutikum für Thrombo-Inflammation, Immunothrombose und Krebsbildungen genutzt werden. Des Weiteren könnten für den Menschen entwickelte Therapieansätze mit Hilfe von hCLEC-2KI Mäusen in vivo untersucht werden. KW - Thrombozyt KW - Thrombose KW - Platelet KW - Thrombosis KW - Rezeptor Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293108 ER -