TY - JOUR A1 - Al-Zaben, Naim A1 - Medyukhina, Anna A1 - Dietrich, Stefanie A1 - Marolda, Alessandra A1 - Hünniger, Kerstin A1 - Kurzai, Oliver A1 - Figge, Marc Thilo T1 - Automated tracking of label-free cells with enhanced recognition of whole tracks JF - Scientific Reports N2 - Migration and interactions of immune cells are routinely studied by time-lapse microscopy of in vitro migration and confrontation assays. To objectively quantify the dynamic behavior of cells, software tools for automated cell tracking can be applied. However, many existing tracking algorithms recognize only rather short fragments of a whole cell track and rely on cell staining to enhance cell segmentation. While our previously developed segmentation approach enables tracking of label-free cells, it still suffers from frequently recognizing only short track fragments. In this study, we identify sources of track fragmentation and provide solutions to obtain longer cell tracks. This is achieved by improving the detection of low-contrast cells and by optimizing the value of the gap size parameter, which defines the number of missing cell positions between track fragments that is accepted for still connecting them into one track. We find that the enhanced track recognition increases the average length of cell tracks up to 2.2-fold. Recognizing cell tracks as a whole will enable studying and quantifying more complex patterns of cell behavior, e.g. switches in migration mode or dependence of the phagocytosis efficiency on the number and type of preceding interactions. Such quantitative analyses will improve our understanding of how immune cells interact and function in health and disease. KW - image processing KW - software Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221093 VL - 9 ER - TY - JOUR A1 - Apsemidou, Athanasia A1 - Füller, Miriam Antonie A1 - Idelevich, Evgeny A. A1 - Kurzai, Oliver A1 - Tragiannidis, Athanasios A1 - Groll, Andreas H. T1 - Candida lusitaniae breakthrough fungemia in an immuno-compromised adolescent: case report and review of the literature JF - Journal of Fungi N2 - Candida lusitaniae is a rare cause of candidemia that is known for its unique capability to rapidly acquire resistance to amphotericin B. We report the case of an adolescent with grade IV graft-vs.-host disease after hematopoietic cell transplantation who developed catheter-associated C. lusitaniae candidemia while on therapeutic doses of liposomal amphotericin B. We review the epidemiology of C. lusitaniae bloodstream infections in adult and pediatric patients, the development of resistance, and its role in breakthrough candidemia. Appropriate species identification, in vitro susceptibility testing, and source control are pivotal to optimal management of C. lusitaniae candidemia. Initial antifungal therapy may consist of an echinocandin and be guided by in vitro susceptibility and clinical response. KW - Candida lusitaniae KW - candidemia KW - resistance KW - breakthrough KW - infection KW - transplantation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220125 SN - 2309-608X VL - 6 IS - 4 ER - TY - JOUR A1 - Ziegler, Sabrina A1 - Weiss, Esther A1 - Schmitt, Anna-Lena A1 - Schlegel, Jan A1 - Burgert, Anne A1 - Terpitz, Ulrich A1 - Sauer, Markus A1 - Moretta, Lorenzo A1 - Sivori, Simona A1 - Leonhardt, Ines A1 - Kurzai, Oliver A1 - Einsele, Hermann A1 - Loeffler, Juergen T1 - CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells JF - Scientific Reports N2 - Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response. KW - pattern recognition receptors KW - fungal infection KW - Aspergillus fumigatus KW - natural killer cells Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170637 VL - 7 IS - 6138 ER - TY - JOUR A1 - Sattler, Janko A1 - Noster, Janina A1 - Brunke, Anne A1 - Plum, Georg A1 - Wiegel, Pia A1 - Kurzai, Oliver A1 - Meis, Jacques F. A1 - Hamprecht, Axel T1 - Comparison of two commercially available qPCR kits for the detection of Candida auris JF - Journal of Fungi N2 - Candida auris is an emerging pathogen with resistance to many commonly used antifungal agents. Infections with C. auris require rapid and reliable detection methods to initiate successful medical treatment and contain hospital outbreaks. Conventional identification methods are prone to errors and can lead to misidentifications. PCR-based assays, in turn, can provide reliable results with low turnaround times. However, only limited data are available on the performance of commercially available assays for C. auris detection. In the present study, the two commercially available PCR assays AurisID (OLM, Newcastle Upon Tyne, UK) and Fungiplex Candida Auris RUO Real-Time PCR (Bruker, Bremen, Germany) were challenged with 29 C. auris isolates from all five clades and eight other Candida species as controls. AurisID reliably detected C. auris with a limit of detection (LoD) of 1 genome copies/reaction. However, false positive results were obtained with high DNA amounts of the closely related species C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. The Fungiplex Candida Auris RUO Real-Time PCR kit detected C. auris with an LoD of 9 copies/reaction. No false positive results were obtained with this assay. In addition, C. auris could also be detected in human blood samples spiked with pure fungal cultures by both kits. In summary, both kits could detect C. auris-DNA at low DNA concentrations but differed slightly in their limits of detection and specificity. KW - qPCR KW - detection limits KW - sensitivity KW - strain specificity KW - commercial kits KW - Candida auris KW - Fungiplex Candida Auris KW - AurisID Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228879 SN - 2309-608X VL - 7 IS - 2 ER - TY - JOUR A1 - Tappe, Beeke A1 - Lauruschkat, Chris D. A1 - Strobel, Lea A1 - Pantaleón García, Jezreel A1 - Kurzai, Oliver A1 - Rebhan, Silke A1 - Kraus, Sabrina A1 - Pfeuffer-Jovic, Elena A1 - Bussemer, Lydia A1 - Possler, Lotte A1 - Held, Matthias A1 - Hünniger, Kerstin A1 - Kniemeyer, Olaf A1 - Schäuble, Sascha A1 - Brakhage, Axel A. A1 - Panagiotou, Gianni A1 - White, P. Lewis A1 - Einsele, Hermann A1 - Löffler, Jürgen A1 - Wurster, Sebastian T1 - COVID-19 patients share common, corticosteroid-independent features of impaired host immunity to pathogenic molds JF - Frontiers in Immunology N2 - Patients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an ex-vivo whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with Aspergillus fumigatus and Rhizopus arrhizus antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion. Compared to healthy controls, T-helper cells from COVID-19 patients displayed increased expression levels of the exhaustion marker PD-1 and weakened A. fumigatus- and R. arrhizus-induced activation. While baseline secretion of proinflammatory cytokines was massively elevated, whole blood from COVID-19 patients elicited diminished release of T-cellular (e.g., IFN-γ, IL-2) and innate immune cell-derived (e.g., CXCL9, CXCL10) cytokines in response to A. fumigatus and R. arrhizus antigens. Additionally, samples from COVID-19 patients showed deficient granulocyte activation by mold antigens and reduced fungal killing capacity of neutrophils. These features of weakened anti-mold immune responses were largely decoupled from COVID-19 severity, the time elapsed since diagnosis of COVID-19, and recent corticosteroid uptake, suggesting that impaired anti-mold defense is a common denominator of the underlying SARS-CoV-2 infection. Taken together, these results expand our understanding of the immune predisposition to post-viral mold infections and could inform future studies of immunotherapeutic strategies to prevent and treat fungal superinfections in COVID-19 patients. KW - COVID-19 KW - immune impairment KW - T cells KW - granulocytes KW - Aspergillus KW - Rhizopus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283558 SN - 1664-3224 VL - 13 ER - TY - JOUR A1 - Springer, Jan A1 - Walther, Grit A1 - Rickerts, Volker A1 - Hamprecht, Axel A1 - Willinger, Birgit A1 - Teschner, Daniel A1 - Einsele, Hermann A1 - Kurzai, Oliver A1 - Loeffler, Juergen T1 - Detection of Fusarium Species in Clinical Specimens by Probe-Based Real-Time PCR JF - Journal of Fungi N2 - The mold Fusarium is a ubiquitous fungus causing plant, animal and human infections. In humans, Fusarium spp. are the major cause of eye infections in patients wearing contact lenses or after local trauma. Systemic infections by Fusarium spp. mainly occur in immunosuppressed patients and can disseminate throughout the human body. Due to high levels of resistance to antifungals a fast identification of the causative agent is an urgent need. By using a probe-based real-time PCR assay specific for the genus Fusarium we analysed several different clinical specimens detecting Fusarium spp. commonly found in clinical samples in Germany. Also, a large collection of lung fluid samples of haematological patients was analysed (n = 243). In these, two samples (0.8%) were reproducibly positive, but only one could be confirmed by sequencing. For this case of probable invasive fungal disease (IFD) culture was positive for Fusarium species. Here we describe a rapid, probe-based real-time PCR assay to specifically detect DNA from a broad range of Fusarium species and its application to clinically relevant specimens. KW - probe-based real-time PCR KW - Fusarium KW - bronchoalveolar lavage fluid KW - fungal molecular diagnostics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193111 SN - 2309-608X VL - 5 IS - 4 ER - TY - JOUR A1 - Rohde, Jörn A1 - Himmel, Wolfgang A1 - Hofinger, Clemens A1 - Lâm, Thiên-Trí A1 - Schrader, Hanna A1 - Wallstabe, Julia A1 - Kurzai, Oliver A1 - Gágyor, Ildikó T1 - Diagnostic accuracy and feasibility of a rapid SARS-CoV-2 antigen test in general practice - a prospective multicenter validation and implementation study JF - BMC Primary Care N2 - Background PCR testing is considered the gold standard for SARS-CoV-2 diagnosis but its results are earliest available hours to days after testing. Rapid antigen tests represent a diagnostic tool enabling testing at the point of care. Rapid antigen tests have mostly been validated by the manufacturer or in controlled laboratory settings only. External validation at the point of care, particularly in general practice where the test is frequently used, is needed. Furthermore, it is unclear how well point of care tests are accepted by the practice staff. Methods In this prospective multicenter validation study in primary care, general practitioners included adult individuals presenting with symptoms suggesting COVID-19. Each patient was tested by the general practitioner, first with a nasopharyngeal swab for the point of care test (Roche SARS-CoV-2 Rapid Antigen Test) and then with a second swab for PCR testing. Using the RT-PCR result as a reference, we calculated specificity, sensitivity, positive predictive value and negative predictive value, with their 95% confidence intervals. General practitioners and medical assistants completed a survey to assess feasibility and usefulness of the point of care tests. Results In 40 practices in Würzburg, Germany, 1518 patients were recruited between 12/2020 and 06/2021. The point of care test achieved a sensitivity of 78.3% and a specificity of 99.5% compared to RT-PCR. With a prevalence of 9.5%, the positive predictive value was 93.9% and the negative predictive value was 97.8%. General practitioners rated the point of care test as a helpful tool to support diagnostics in patients with signs and symptoms suggestive for infection, particularly in situations where decision on further care is needed at short notice. Conclusion The point of care test used in this study showed a sensitivity below the manufacturer’s specification (Sensitivity 96.25%) in the practice but high values for specificity and high positive predictive value and negative predictive value. Although widely accepted in the practice, measures for further patient management require a sensitive interpretation of the point of care test results. KW - COVID-19 testing KW - feasibility study KW - attitude of health personnel KW - sensitivity and specificity KW - general practice Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299659 VL - 23 IS - 1 ER - TY - JOUR A1 - Springer, Jan A1 - Held, Jürgen A1 - Mengoli, Carlo A1 - Schlegel, Paul Gerhardt A1 - Gamon, Florian A1 - Träger, Johannes A1 - Kurzai, Oliver A1 - Einsele, Hermann A1 - Loeffler, Juergen A1 - Eyrich, Matthias T1 - Diagnostic performance of (1→3)-β-D-glucan alone and in combination with aspergillus PCR and galactomannan in serum of pediatric patients after allogeneic hematopoietic stem cell transplantation JF - Journal of Fungi N2 - Data on biomarker-assisted diagnosis of invasive aspergillosis (IA) in pediatric patients is scarce. Therefore, we conducted a cohort study over two years including 404 serum specimens of 26 pediatric patients after allogeneic hematopoietic stem cell transplantation (alloSCT). Sera were tested prospectively twice weekly for Aspergillus-specific DNA, galactomannan (GM), and retrospectively for (1→3)-β-D-glucan (BDG). Three probable IA and two possible invasive fungal disease (IFD) cases were identified using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group (EORTC/MSGERC) 2019 consensus definitions. Sensitivity and specificity for diagnosis of probable IA and possible IFD was 80% (95% confidential interval (CI): 28–99%) and 55% (95% CI: 32–77%) for BDG, 40% (95% CI: 5–85%) and 100% (95% CI: 83–100%) for GM, and 60% (95% CI: 15–95%) and 95% (95% CI: 75–100%) for Aspergillus-specific real-time PCR. However, sensitivities have to be interpreted with great caution due to the limited number of IA cases. Interestingly, the low specificity of BDG was largely caused by false-positive BDG results that clustered around the date of alloSCT. The following strategies were able to increase BDG specificity: two consecutive positive BDG tests for diagnosis (specificity 80% (95% CI: 56–94%)); using an optimized cutoff value of 306 pg/mL (specificity 90% (95% CI: 68–99%)) and testing BDG only after the acute posttransplant phase. In summary, BDG can help to diagnose IA in pediatric alloSCT recipients. However, due to the poor specificity either an increased cutoff value should be utilized or BDG results should be confirmed by an alternative Aspergillus assay. KW - beta-D-glucan KW - galactomannan KW - real-time PCR KW - Aspergillus KW - pediatric Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234179 SN - 2309-608X VL - 7 IS - 3 ER - TY - JOUR A1 - Aldejohann, Alexander Maximilian A1 - Wiese-Posselt, Miriam A1 - Gastmeier, Petra A1 - Kurzai, Oliver T1 - Expert recommendations for prevention and management of Candida auris transmission JF - Mycoses N2 - Candida auris was first described as a yeast pathogen in 2009. Since then, the species has emerged worldwide. In contrast to most other Candida spp., C. auris frequently exhibits multi-drug resistance and is readily transmitted in hospital settings. While most detections so far are from colonised patients, C. auris does cause superficial and life-threatening invasive infections. During management of the first documented C. auris transmission in a German hospital, experts from the National Reference Centers for Invasive Fungal Infections (NRZMyk) and the National Reference Center for Surveillance of Nosocomial Infections screened available literature and integrated available knowledge on infection prevention and C. auris epidemiology and biology to enable optimal containment. Relevant recommendations developed during this process are summarised in this guidance document, intended to assist in management of C. auris transmission and potential outbreak situations. Rapid and effective measures to contain C. auris spread require a multi-disciplinary approach that includes clinical specialists of the affected unit, nursing staff, hospital hygiene, diagnostic microbiology, cleaning staff, hospital management and experts in diagnostic mycology / fungal infections. Action should be initiated in a step-wise process and relevant interventions differ between management of singular C. auris colonised / infected patients and detection of potential C. auris transmission or nosocomial outbreaks. KW - Candida auris KW - nosocomial transmission KW - infection prevention KW - expert recommendation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318570 VL - 65 IS - 6 SP - 590 EP - 598 ER - TY - JOUR A1 - Walther, Grit A1 - Zimmermann, Anna A1 - Theuersbacher, Johanna A1 - Kaerger, Kerstin A1 - Lilienfeld-Toal, Marie von A1 - Roth, Mathias A1 - Kampik, Daniel A1 - Geerling, Gerd A1 - Kurzai, Oliver T1 - Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany JF - Journal of Fungi N2 - Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment. KW - eye infection KW - fungal infection KW - keratitis KW - antifungal susceptibility KW - natamycin KW - Fusarium KW - Purpureocillium KW - Aspergillus KW - Alternaria KW - Scedosporium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241810 SN - 2309-608X VL - 7 IS - 7 ER -