TY - THES A1 - Chaudhari, Sweena M. T1 - Role of Hypoxia-Inducible Factor (HIF) 1α in Dendritic Cells in Immune Regulation of Atherosclerosis T1 - Rolle von Hypoxie induziertem Faktor (HIF) 1α in dendritischen Zellen in der Immunregulation der Atherosklerose N2 - Atherosclerosis is the underlying cause of cardiovascular diseases and a major threat to human health worldwide. It involves not only accumulation of lipids in the vessel wall but a chronic inflammatory response mediated by highly specific cellular and molecular responses. Macrophages and dendritic cells (DCs) play an essential role in taking up modified lipids and presenting them to T and B lymphocytes, which promote the immune response. Enhanced activation, migration and accumulation of inflammatory cells at the local site leads to formation of atherosclerotic plaques. Atherosclerotic plaques become hypoxic due to reduced oxygen diffusion and high metabolic demand of accumulated cells. The various immune cells experience hypoxic conditions locally and inflammatory stimuli systemically, thus up-regulating Hypoxia-inducible factor 1α. Though the role of HIF1α in macrophages and lymphocytes has been elucidated, its role in DCs still remains controversial, especially with respect to atherosclerosis. In this project work, the role of HIF1α in DCs was investigated by using a cell specific knockout mouse model where HIF1α was deleted in CD11c+ cells. Aortic root sections from atherosclerotic mice showed presence of hypoxia and up-regulation of HIF1α which co-localized with CD11c+ cells. Atherosclerotic splenic DCs also displayed enhanced expression of HIF1α, proving non-hypoxic stimulation of HIF1α due to systemic inflammation. Conditional knockout (CKO) mice lacking HIF1α in CD11c+ cells, under baseline conditions did not show changes in immune responses suggesting effects of HIF1α only under inflammatory conditions. When these mice were crossed to the Ldlr-/- line and placed on 8 weeks of high fat diet, they developed enhanced plaques with higher T-cell infiltration as compared to the wild-type (WT) controls. The plaques were of a complex phenotype, defined by increased percent of smooth muscle cells (SMCs) and necrotic core area and reduced percent of macrophages and DCs. The mice also displayed enhanced T-cell activation and a Th1 bias in the periphery. The CKO DCs themselves exhibited increased expression of IL 12 and a higher capacity to proliferate and polarize naive T cells to the Th1 phenotype in vitro. The DCs also showed decreased expression of STAT3, in line with the inhibitory effects of STAT3 on DC activation seen in previous studies. When STAT3 was overexpressed in DCs in vitro, IL 12 was down-regulated, but its expression increased significantly on STAT3 inhibition using a mutant vector. In addition, when STAT3 was overexpressed in DCs in vivo using a Cre regulated lentiviral system, the mice showed decreased plaque formation compared to controls. Interestingly, the effects of STAT3 modulation were similar in WT and CKO mice, intending that STAT3 lies downstream of HIF1α. Finally, using a chromatin immunoprecipitation assay (ChIP), it was confirmed that HIF1α binds to hypoxia responsive elements (HREs) in the Stat3 gene promoter thus regulating its expression. When DCs lack HIF1α, STAT3 expression is not stimulated and hence IL 12 production by DCs is uninhibited. This excessive IL 12 can activate naive T cells and polarize them to the Th1 phenotype, thereby enhancing atherosclerotic plaque progression. This project thus concludes that HIF1α restrains DC activation via STAT3 generation and prevents excessive production of IL 12 that helps to keep inflammation and atherosclerosis under check. N2 - Atherosklerose ist die zugrundeliegende Ursache kardiovaskulärer Erkrankungen und stellt weltweit eine bedeutende Gesundheitsgefahr dar. An der Erkrankung ist nicht nur eine Anreicherung von Lipiden in der Gefäßwand beteiligt, sondern auch eine chronische Entzündungsantwort, welche durch hochspezifische zelluläre sowie molekulare Reaktionen vermittelt wird. Makrophagen und dendritische Zellen (DCs) sind essentiell an der Aufnahme von modifizierten Lipiden sowie deren Präsentation gegenüber T und B Lymphozyten beteiligt, die ihrerseits wiederum Immunantworten fördern. Eine lokal gesteigerte Aktivierung, Migration und Akkumulation inflammatorischer Zellen trägt letztlich zur Bildung atherosklerotischer Plaques bei. Atherosklerotische Plaques werden aufgrund reduzierter Sauerstoff Diffusion und hoher metabolischer Aktivität der akkumulierten Zellen hypoxisch. Die verschiedenen Immunzellen sind lokal hypoxischen Bedingungen sowie systemisch inflammatorischen Stimuli ausgesetzt, wodurch sie Hypoxie-induzierten Faktor 1a (HIF1α) hochregulieren. Obwohl die Bedeutung von HIF1α in Makrophagen und Lymphozyten weitgehend aufgeklärt ist, ist dessen Rolle in DCs immer noch umstritten, insbesondere in Bezug auf Atherosklerose. In diesem Projekt wurde die Rolle von HIF1α in DCs mittels eines zellspezifischen Knockout Mausmodells untersucht, in welchem HIF1α in CD11c+ DCs deletiert wurde. Schnitte der Aortenwurzel aus atherosklerotischen Mäusen zeigten das Bestehen von Hypoxie und die Hochregulation von HIF1α, welches mit CD11c+ Zellen kolokalisierte. DCs aus der Milz atherosklerotischer Tiere wiesen ebenfalls eine erhöhte Expression von HIF1α auf, was eine nicht hypoxische Stimulation von HIF1α aufgrund systemischer Inflammation beweist. Konditionelle Knockout (CKO) Mäuse zeigten im Ausgangszustand keine Veränderung der Immunantwort was einen Einfluss von HIF1α unter ausschließlich inflammatorischen Bedingungen nahelegt. Eine achtwöchige atherogene Diät dieser Mäuse im Ldlr-/- Hintergrund resultierte in der Entwicklung größerer Plaques mit gesteigerter T Zell Infiltration im Vergleich zu wildtypischen (WT) Kontrollen. Die Plaques wiesen einen komplexen Phänotyp auf, der sich durch einen erhöhten prozentualen Anteil glatter Muskelzellen, nekrotischer Fläche sowie einen verminderten prozentualen Anteil an Makrophagen auszeichnete. Die Mäuse zeigten ferner eine erhöhte T Zell Aktivierung und eine Tendenz zur Th1 Antwort in der Peripherie. In vitro zeigten die konditionellen knockout DCs eine gesteigerte IL-12 Expression und eine gesteigerte Fähigkeit die Proliferation naiver T Zellen zu induzieren beziehungsweise in Richtung Th1 zu polarisieren. Die DCs wiesen ferner eine verminderte STAT3 Expression auf. Dies stimmt mit den in früheren Studien beobachteten inhibitorischen Effekten von STAT3 auf die Aktivierung von DCs überein. Eine Überexpression von STAT3 in DCs in vitro führte zu einer Herunterregulation von IL-12. Bei Inhibition von STAT3 mittels eines mutierten Vektors steigerte sich die Expression jedoch signifikant. Ferner führte eine STAT3 Überexpression in DCs mittels eines Cre-regulierten lentiviralen Systems in vivo zu einer verminderten Plaqueformation in den Mäusen im Vergleich zu Kontrollen. Interessanterweise waren die Auswirkungen der STAT3 Modulation in WT und CKO Mäusen ähnlich, was vermuten lässt, dass STAT3 HIF1α nachgeschaltet ist. Mittels eines Chromatin Immunpräzipitiations-Assays wurde letztlich bestätigt, dass HIF1α an Hypoxie-responsive Elemente im Stat3 Genpromotor bindet und dadurch seine Expression reguliert. Wenn DCs HIF1α fehlt wird keine STAT3 Expression gefördert, was eine ungebremste IL-12 Produktion durch DCs zur Folge hat. Dieses überschüssige IL-12 Sekretion kann naive T Zellen aktivieren und in Richtung eines Th1 Phänotyps polarisieren, wodurch das Voranschreiten atherosklerotischer Plaques gefördert wird. Dieses Projekt kommt folglich zu dem Schluss, dass HIF1α die Aktivierung von DCs über STAT3-Bildung beschränkt und eine übermäßige Produktion von IL-12 verhindert, wodurch Inflammation und Atherosklerose im kontrolliert werden. KW - Dendritische Zelle KW - Hypoxie KW - Arteriosklerose KW - Entzündung KW - Hypoxia KW - HIF1alpha KW - Atherosclerosis KW - Dendritic cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-91853 ER - TY - THES A1 - Busch, Martin T1 - Aortic Dendritic Cell Subsets in Healthy and Atherosclerotic Mice and The Role of the miR-17~92 Cluster in Dendritic Cells T1 - Subsets dendritischer Zellen in der Aorta gesunder und atherosklerotischerMäuse und die Rolle des miR-17~92 Clusters in dendritischen Zellen N2 - Atherosclerosis is accepted to be a chronic inflammatory disease of the arterial vessel wall. Several cellular subsets of the immune system are involved in its initiation and progression, such as monocytes, macrophages, T and B cells. Recent research has demonstrated that dendritic cells (DCs) contribute to atherosclerosis, too. DCs are defined by their ability to sense and phagocyte antigens, to migrate and to prime other immune cells, such as T cells. Although all DCs share these functional characteristics, they are heterogeneous with respect to phenotype and origin. Several markers have been used to describe DCs in different lymphoid and non-lymphoid organs; however, none of them has proven to be unambiguous. The expression of surface molecules is highly variable depending on the state of activation and the surrounding tissue. Furthermore, DCs in the aorta or the atherosclerotic plaque can be derived from designated precursor cells or from monocytes. In addition, DCs share both their marker expression and their functional characteristics with other myeloid cells like monocytes and macrophages. The repertoire of aortic DCs in healthy and atherosclerotic mice has just recently started to be explored, but yet there is no systemic study available, which describes the aortic DC compartment. Because it is conceivable that distinct aortic DC subsets exert dedicated functions, a detailed description of vascular DCs is required. The first part of this thesis characterizes DC subsets in healthy and atherosclerotic mice. It describes a previously unrecognized DC subset and also sheds light on the origin of vascular DCs. In recent years, microRNAs (miRNAs) have been demonstrated to regulate several cellular functions, such as apoptosis, differentiation, development or proliferation. Although several cell types have been characterized extensively with regard to the miRNAs involved in their regulation, only few studies are available that focus on the role of miRNAs in DCs. Because an improved understanding of the regulation of DC functions would allow for new therapeutic options, research on miRNAs in DCs is required. The second part of this thesis focuses on the role of the miRNA cluster miR- 17~92 in DCs by exploring its functions in healthy and atherosclerotic mice. This thesis clearly demonstrates for the first time an anti-inflammatory and atheroprotective role for the miR17-92 cluster. A model for its mechanism is suggested. N2 - Atherosklerose ist eine chronisch-entzündliche Erkrankung der arteriellen Gefäßwand und zahlreiche Zellen des Immunsystems, wie zum Beispiel Monozyten, Makrophagen, T und B Zellen sind an der Entstehung und Entwicklung beteiligt. Aktuelle Forschungsergebnisse haben gezeigt, dass auch dendritische Zellen (DCs) zur Atherosklerose beitragen. DCs sind durch ihre Fähigkeit gekennzeichnet, Antigene zu erkennen, aufzunehmen, zu migrieren und andere Immunzellen, wie zum Beispiel T Zellen, zu aktivieren. Auch wenn alle DCs diese funktionellen Merkmale teilen, so sind sie in Bezug auf ihren Phänotyp oder Ursprung eine eher heterogene Gruppe. Zahlreiche Oberflächenmoleküle wurden in der Vergangenheit genutzt, um DCs in lymphatischen und nicht-lymphatischen Geweben zu beschreiben. Allerdings hat sich keines dieser Moleküle als spezifisch und unverwechselbar erwiesen. Die Expression von Oberflächenmolekülen ist sehr variabel und hängt nicht nur vom Aktivierungszustand der DCs, sondern auch vom umliegenden Gewebe ab. Dazu kommt, dass DCs in der Aorta, beziehungsweise im atherosklerotischen Plaque, von designierten Vorläuferzellen, aber auch von Monozyten abstammen können und DCs das Profil ihrer Oberflächenmoleküle, sowie ihre funktionellen Eigenschaften, mit anderen myeloiden Zellen wie Monozyten und Makrophagen teilen. Neuere Arbeiten haben damit begonnen das Repertoire an DCs in der Aorta von gesunden und atherosklerotischen Mäusen zu untersuchen. Da es naheliegt, dass verschiedene DC Untergruppen ganz bestimmte Funktionen ausüben, wird eine detaillierte Beschreibung vaskulärer DCs in der Forschung benötigt. Weil es hierzu allerdings bislang kaum Studien gibt, untersucht der erste Teil dieser Arbeit zum ersten Mal systematisch die in gesunden und atherosklerotischen Mäusen vorkommenden Gruppen an DCs. Sie beschreibt außerdem eine zuvor nicht beachtete DC-Untergruppe und gibt Aufschluss über den Ursprung vaskulärer DCs. In den letzten Jahren wurde gezeigt, dass microRNAs (mirRNAs) zahlreiche zelluläre Vorgänge wie Apoptose, Differenzierung, Entwicklung und Proliferation regulieren. Obwohl viele Zelltypen in Bezug auf die in ihrer Regulation eingebundenen mirRNAs charakterisiert wurden, gibt es nur wenige Studien, die sich mit der Rolle von mirRNAs in DCs beschäftigen. Der zweite Teil dieser Arbeit konzentriert sich auf die Rolle der miRNA Gruppe miR-17~92 in DCs und untersucht deren Rolle in gesunden und atherosklerotischen Mäusen. Diese Arbeit zeigt erstmals eine deutliche anti-inflammatorische und protektive Rolle dieser miRNA und schlägt ein Modell für die entdeckten Mechanismen vor. KW - Aorta KW - Maus KW - Zelle KW - Cluster KW - miRNS KW - Dendritische Zelle KW - Arteriosklerose KW - miR-17~92 KW - dendritic cells KW - atherosclerosis KW - mice KW - murine Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71683 ER - TY - THES A1 - Michalska, Marta T1 - Molecular Imaging of atherosclerosis T1 - Molekulare Bildgebung der Atherosklerose N2 - Atherosklerose ist eine aktive und progressive Erkrankung, bei der vaskuläre Adhäsionsmoleküle wie VCAM-1 eine entscheidende Rolle durch Steuerung der Rekrutierung von Immunzellen in den frühen und fortgeschrittenen Plaques spielen. Ein zielgerichteter Einsatz von VCAM-1-Molekülen mit spezifischen Kontrastmitteln ist daher eine Möglichkeit, die VCAM-1-Expression zu kontrollieren, Plaquewachstum ab einem frühen Zeitpunkt zu visualisieren und eine frühe Prävention von Atherosklerose vor Beginn der Thrombusbildung zu etablieren. Des Weiteren bietet die nichtinvasive Magnetresonanz (MR)-Bildgebung den Vorteil der Kombination molekularer und morphologischer Daten. Sie ermöglicht, mithilfe von entwickelten VCAM-1-markierten Eisenoxidpartikeln, den spezifischen Nachweis entzündlicher Prozesse während der Atherosklerose. Diese Arbeit belegt, dass mit dem VCAM-1-Konzept eine vielversprechende Herangehensweise gefunden wurde und dass das, mit spezifischen superparamagnetischen Eisenoxid (USPIO) konjugierte VCAM-1-Peptid, gegenüber unspezifischer USPIOs ein erhöhtes Potenzial bei der Untersuchung der Atherosklerose in sich trägt. Im ersten Teil der Arbeit konnte im Mausmodell gezeigt werden, dass gerade das VCAM-1-Molekül ein sinnvoller Ansatzpunkt zur Darstellung und Bildgebung von Atherosklerose ist, da in der frühen Phase der Entzündung die vaskulären Zelladhäsionsmoleküle überexprimiert und auch kontinuierlich, während der fortschreitenden Plaquebildung, hochreguliert werden. Weiterhin beschreibt diese Arbeit die Funktionstüchtigkeit und das Vermögen des neu gestalteten USPIO Kontrastmittels mit dem zyklischen Peptid, in seiner Spezialisierung auf die VCAM-1 Erkennung. Experimentelle Studien mit ultra-Hochfeld-MRT ermöglichten weitere ex vivo und in vivo Nachweise der eingesetzten USPIO-VCAM-1-Partikel innerhalb der Region um die Aortenwurzel in frühen und fortgeschrittenen atherosklerotischen Plaques von 12 und 30 Wochen alten Apolipoprotein E-defizienten (ApoE-/-) Mäusen. Mit ihrer Kombination aus Histologie und Elektronenmikroskopie zeigt diese Studie zum ersten Mal die Verteilung von VCAM-1-markierten USPIO Partikeln nicht nur in luminalem Bereich der Plaques, sondern auch in tieferen Bereichen der medialen Muskelzellen. Dieser spezifische und sensitive Nachweis der frühen und fortgeschrittenen Stadien der Plaquebildung bringt auf molekularer Ebene neue Möglichkeiten zur Früherkennung von atherosklerotischen Plaques vor dem Entstehen von 8 Rupturen. Im Gegensatz zum USPIO-VCAM-1-Kontrastmittel scheiterten unspezifische USPIO Partikel an der Identifikation früher Plaqueformen und begrenzten die Visualisierung von Atherosklerose auf fortgeschrittene Stadien in ApoE-/- Mäusen. N2 - Atherosclerosis is an active and progressive condition where the vascular cell adhesion molecules as VCAM-1 play a vital role controlling the recruitment of immune cells within the early and advanced plaques. Therefore targeting of VCAM-1 molecules with specific contrast agent bears the possibility to monitor the VCAM-1 expression, visualize the plaque progression starting at the early alterations, and help to establish early prevention of atherosclerosis before the origin of the thrombus formation, of which late recognition leads to myocardial infarction. Furthermore noninvasive magnetic resonance imaging (MRI) offers the benefit of combining the molecular and anatomic data and would thus enable specific detection of VCAM-1 targeted iron oxide contrast agent within inflammatory process of atherosclerosis. This thesis exactly presents the VCAM-1 concept as a suitable molecular approach and the potential of specific ultrasmall superparamagnetic iron oxide (USPIO) conjugated to the VCAM-1 binding peptide over unspecific non-targeted USPIO particles for evaluation of atherosclerosis. This work firstly demonstrated that selection of VCAM-1 molecules offers a good and potential strategy for imaging of atherosclerosis, as these vascular cell adhesion molecules are highly expressed in the early phase of inflammation and also continuously up-regulated within the advanced plaques. Secondly, this thesis showed the proof of principle and capability of the newly designed USPIO contrast agent conjugated to the specific cyclic peptide for VCAM-1 recognition. The experimental studies including ultra-high field MRI enabled further ex vivo and in vivo detection of applied USPIO-VCAM-1 particles within the aortic root region of early and advanced atherosclerotic plaques of 12 and 30 week old apolipoprotein E deficient (ApoE-/-) mice. Using a combination of histology and electron microscopy, this study for the first time pointed to distribution of targeted USPIO-VCAM-1 particles within plaque cells expressing VCAM-1 not only in luminal regions but also in deeper medial smooth muscle cell areas. Hence functionalized USPIO particles targeting VCAM-1 molecules allow specific and sensitive detection of early and advanced plaques at the molecular level, giving the new possibilities for early recognition of atherosclerotic plaques before the appearance of advanced and prone to rupture lesions. In contrast to the functionalized USPIO-VCAM-1, utilized non-targeted USPIO particles did not succeed in early plaque 6 identification limiting visualization of atherosclerosis to advanced forms in atherosclerotic ApoE-/- mice. KW - VCAM KW - Arteriosklerose KW - Superparamagnetische Eisenoxid Kontrastmittel KW - vaskuläre Adhäsionsmoleküle KW - Atherosklerose KW - superparamagnetische Eisenoxid Kontrastmittel KW - vascular cell adhesion molecules KW - atherosclerosis KW - iron oxide contrast agent KW - Kontrastmittel Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73243 ER -