TY - JOUR A1 - Blömer, Nadja A1 - Pachel, Christina A1 - Hofmann, Urlich A1 - Nordbeck, Peter A1 - Bauer, Wolfgang A1 - Mathes, Denise A1 - Frey, Anna A1 - Bayer, Barbara A1 - Vogel, Benjamin A1 - Ertl, Georg T1 - 5-Lipoxygenase facilitates healing after myocardial infarction JF - Basic Research in Cardiology N2 - Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX\(^{−/−}\) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX\(^{−/−}\) bone marrow in 5-LOX\(^{−/−}\) animals), indicating that an altered function of 5-LOX\(^{−/−}\) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX\(^{−/−}\) mice in vivo after MI. This might be due to an impaired migration of 5-LOX\(^{−/−}\) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function. KW - lipoxygenase KW - myocardial infarction KW - extracellular matrix remodeling KW - inflammation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132602 VL - 108 IS - 4 ER - TY - JOUR A1 - Pachel, Christina A1 - Mathes, Denise A1 - Bayer, Barbara A1 - Dienesch, Charlotte A1 - Wangorsch, Gaby A1 - Heitzmann, Wolfram A1 - Lang, Isabell A1 - Ardehali, Hossein A1 - Ertl, Georg A1 - Dandekar, Thomas A1 - Wajant, Harald A1 - Frantz, Stefan T1 - Exogenous Administration of a Recombinant Variant of TWEAK Impairs Healing after Myocardial Infarction by Aggravation of Inflammation JF - PLoS ONE N2 - Background: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factorinducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined. Methods and results: Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality. Conclusion: Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium. KW - apoptosis KW - myocardial infarction KW - neutrophils KW - cytokines KW - inflammation KW - myocardium KW - heart KW - extracellular matrix Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129889 VL - 8 IS - 11 ER - TY - JOUR A1 - Chopra, Martin A1 - Lang, Isabell A1 - Salzmann, Steffen A1 - Pachel, Christina A1 - Kraus, Sabrina A1 - Bäuerlein, Carina A. A1 - Brede, Christian A1 - Jordán Garrote, Ana-Laura A1 - Mattenheimer, Katharina A1 - Ritz, Miriam A1 - Schwinn, Stefanie A1 - Graf, Carolin A1 - Schäfer, Viktoria A1 - Frantz, Stefan A1 - Einsele, Hermann A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1 JF - PLoS ONE N2 - Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome. KW - Bioluminescence KW - cancer treatment KW - cell staining KW - cytokines KW - immune cells KW - metastasis KW - regulatory T cells KW - T cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97246 ER -