TY - JOUR A1 - Amich, Jorge A1 - Schafferer, Lukas A1 - Haas, Hubertus A1 - Krappmann, Sven T1 - Regulation of Sulphur Assimilation Is Essential for Virulence and Affects Iron Homeostasis of the Human-Pathogenic Mould Aspergillus fumigatus JF - PLoS Pathogens N2 - Abstract Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen. Author Summary Invasive pulmonary aspergillosis (IPA) is a life-threatening disease that affects primarily immunosuppressed patients. During the last decades the incidence of this disease that is accompanied by high mortality rates has increased. Since opportunistic pathogenic fungi, unlike other pathogens, do not express specific virulence factors, it is becoming more and more clear that the elucidation of fungal metabolism is an essential task to understand fungal pathogenicity and to identify novel antifungal targets. In this work we report genetic inactivation of the sulphur transcription regulator MetR in Aspergillus fumigatus and subsequent study of the resulting phenotypes and transcriptional deregulation of the mutant. Here we show that regulation of sulphur assimilation is an essential process for the manifestation of IPA. Moreover, a regulatory connection between sulphur metabolism and iron homeostasis, a further essential virulence determinant of A. fumigatus, is demonstrated in this study for the first time. A deeper knowledge of sulphur metabolism holds the promise of increasing our understanding of fungal virulence and might lead to improved antifungal therapy. KW - gene regulation KW - transcription factors KW - DNA transcription KW - aspergillus fumigatus KW - methionine KW - sulfur KW - fungal pathogens KW - sulfates Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130372 VL - 9 IS - 8 ER - TY - JOUR A1 - Becker, Svetlana A1 - Oelschlaeger, Tobias A. A1 - Wullaert, Andy A1 - Pasparakis, Manolis A1 - Wehkamp, Jan A1 - Stange, Eduard F. A1 - Gersemann, Michael T1 - Bacteria Regulate Intestinal Epithelial Cell Differentiation Factors Both In Vitro and In Vivo JF - PLoS ONE N2 - Background: The human colon harbours a plethora of bacteria known to broadly impact on mucosal metabolism and function and thought to be involved in inflammatory bowel disease pathogenesis and colon cancer development. In this report, we investigated the effect of colonic bacteria on epithelial cell differentiation factors in vitro and in vivo. As key transcription factors we focused on Hes1, known to direct towards an absorptive cell fate, Hath1 and KLF4, which govern goblet cell. Methods: Expression of the transcription factors Hes1, Hath1 and KLF4, the mucins Muc1 and Muc2 and the defensin HBD2 were measured by real-time PCR in LS174T cells following incubation with several heat-inactivated E. coli strains, including the probiotic E. coli Nissle 1917+/- flagellin, Lactobacilli and Bifidobacteria. For protein detection Western blot experiments and chamber-slide immunostaining were performed. Finally, mRNA and protein expression of these factors was evaluated in the colon of germfree vs. specific pathogen free vs. conventionalized mice and colonic goblet cells were counted. Results: Expression of Hes1 and Hath1, and to a minor degree also of KLF4, was reduced by E. coli K-12 and E. coli Nissle 1917. In contrast, Muc1 and HBD2 expression were significantly enhanced, independent of the Notch signalling pathway. Probiotic E. coli Nissle 1917 regulated Hes1, Hath1, Muc1 and HBD2 through flagellin. In vivo experiments confirmed the observed in vitro effects of bacteria by a diminished colonic expression of Hath1 and KLF4 in specific pathogen free and conventionalized mice as compared to germ free mice whereas the number of goblet cells was unchanged in these mice. Conclusions: Intestinal bacteria influence the intestinal epithelial differentiation factors Hes1, Hath1 and KLF4, as well as Muc1 and HBD2, in vitro and in vivo. The induction of Muc1 and HBD2 seems to be triggered directly by bacteria and not by Notch. KW - stem cells KW - inflammatory-bowel-disease KW - Ileal Crohns-disease KW - coli nissel 1917 KW - ulcreative colitis KW - escherichia coli KW - porphyromonas gingivalis KW - antimicrobial peptides KW - colorectal cancer KW - alpha defensins Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131168 VL - 8 IS - 2 ER - TY - JOUR A1 - Berghoff, Bork A. A1 - Konzer, Anne A1 - Mank, Nils N. A1 - Looso, Mario A1 - Rische, Tom A1 - Förstner, Konrad U. A1 - Krüger, Marcus A1 - Klug, Gabriele T1 - Integrative "Omics"-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses JF - PLOS Genetics N2 - Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered expression maps on the system level ("expressome"). Finally, intense mass spectrometry combined with RNA-seq might be the future tool of choice to re-annotate genomes in various organisms and will help to understand how they adapt to alternating conditions. KW - singlet oxygen stress KW - genome-wide analysis KW - anti-sigma factor KW - rhodobacter sphaeroides KW - gene expression KW - quanititative proteomics KW - photooxidative stress KW - in-vivo KW - photosynthesis genes KW - mass spectrometry Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127587 SN - 1553-7404 VL - 9 IS - 6 ER - TY - THES A1 - Dunkel, Nico T1 - Regulation of virulence-associated traits of the human fungal pathogen Candida albicans by nitrogen availability T1 - Regulation Virulenz-assoziierter Faktoren im humanpathogenen Pilz Candida albicans durch Stickstoffverfügbarkeit N2 - Nitrogen-regulated pathogenesis describes the expression of virulence attributes as direct response to the quantity and quality of an available nitrogen source. As consequence of nitrogen availability, the opportunistic human fungal pathogen Candida albicans changes its morphology and secretes aspartic proteases [SAPs], both well characterized virulence attributes. C. albicans, contrarily to its normally non-pathogenic relative Saccharomyces cerevisiae, is able to utilize proteins, which are considered as abundant and important nitrogen source within the human host. To assimilate complex proteinaceous matter, extracellular proteolysis is followed by uptake of the degradation products through dedicated peptide transporters (di-/tripeptide transporters [PTRs] and oligopeptide transporters [OPTs]). The expression of both traits is transcriptionally controlled by Stp1 - the global regulator of protein utilization - in C. albicans. The aim of the present study was to elucidate the regulation of virulence attributes of the pathogenic fungus C. albicans by nitrogen availability in more detail. Within a genome wide binding profile of Stp1, during growth with proteins, more than 600 Stp1 target genes were identified, thereby confirming its role in the usage of proteins, but also other nitrogenous compounds as nitrogen source. Moreover, the revealed targets suggest an involvement of Stp1 in the general adaption to nutrient availability as well as in the environmental stress response. With the focus on protein utilization and nitrogen-regulated pathogenesis, the regulation of the major secreted aspartic protease Sap2 - additionally one of the prime examples of allelic heterogeneity in C. albicans - was investigated in detail. Thereby, the heterogezygous SAP2 promoter helped to identify an unintended genomic alteration as the true cause of a growth defect of a C. albicans mutant. Additionally, the promoter region, which was responsible for the differential activation of the SAP2 alleles, was delimited. Furthermore, general Sap2 induction was demonstrated to be mediated by distinct cis-acting elements that are required for a high or a low activity of SAP2 expression. For the utilization of proteins as nitrogen source it is also crucial to take up the peptides that are produced by extracellular proteolysis. Therefore, the function and importance of specific peptide transporters was investigated in C. albicans mutants, unable to use peptides as nitrogen source (opt1Δ/Δ opt2Δ/Δ opt3Δ/Δ opt4Δ/Δ opt5Δ/Δ ptr2Δ/Δ ptr22Δ/Δ septuple null mutants). The overexpression of individual transporters in these mutants revealed differential substrate specificities and expanded the specificity of the OPTs to dipeptides, a completely new facet of these transporters. The peptide-uptake deficient mutants were further used to elucidate, whether indeed proteins and peptides are an important in vivo nitrogen source for C. albicans. It was found that during competitive colonization of the mouse intestine these mutants exhibited wild-type fitness, indicating that neither proteins nor peptides are primary nitrogen sources required to efficiently support growth of C. albicans in the mouse gut. Adequate availability of the preferred nitrogen source ammonium represses the utilization of proteins and other alternative nitrogen sources, but also the expression of virulence attributes, like Sap secretion and nitrogen-starvation induced filamentation. In order to discriminate, whether ammonium availability is externally sensed or determined inside the cell by C. albicans, the response to exterior ammonium concentrations of ammonium-uptake deficient mutants (mep1Δ/Δ mep2Δ/Δ null mutants) was investigated. This study showed that presence of an otherwise suppressing ammonium concentration did not inhibit Sap2 proteases secretion and arginine-induced filamentation in these mutants. Conclusively, ammonium availability is primarily determined inside the cell in order to control the expression of virulence traits. In sum, the present work contributes to the current understanding of how C. albicans regulates expression of virulence-associated traits in response to the presence of available nitrogen sources - especially proteins and peptides - in order to adapt its lifestyle within a human host. N2 - Stickstoffregulierte Pathogenität bezeichnet die Kontrolle von Virulenz-assoziierten Eigenschaften als direkte Folge der verfügbaren Quantität und Qualität einer Stickstoffquelle. Im Zusammenhang mit der Stickstoffverfügbarkeit verändert der opportunistisch krankheitserregende Pilz Candida albicans seine Morphologie und sekretiert Aspartat-Proteasen [SAPs], beides gut charakterisierte Virulenzattribute. Im Gegensatz zu seinem normalerweise apathogenen Verwandten Saccharomyces cerevisiae ist C. albicans in der Lage Proteine zu verwerten, welche als sehr häufige und wichtige Stickstoffquelle im menschlichen Wirt angesehen werden. Zur Nutzung von Proteinen sekretiert C. albicans Aspartat-Proteasen für den außerzellulären Verdau der Proteine und exprimiert Peptidtransporter (Di- /Tripeptidtransporter [PTRs] und Oligopeptidtransporter [OPTs]) um die Abbauprodukte aufzunehmen. Beide Eigenschaften werden transkriptionell von Stp1 - dem globalen Regulator zur Verwertung von Proteinen - kontrolliert. Ziel der vorliegenden Arbeit war es, die Regulation von Virulenzattributen im pathogenen Pilz C. albicans durch die Verfügbarkeit von Stickstoff genauer zu untersuchen. Innerhalb einer genomweiten Bindestudie von Stp1 wurden mehr als 600 Stp1-Zielgene während des Wachstums mit Proteinen identifiziert. Dadurch bestätigte sich die Funktion von Stp1 in der Proteinverwertung und wurde zudem auch auf die allgemeine Verwertung von Stickstoffquellen erweitert. Des Weiteren deuten die aufgedeckten Zielgene an, dass Stp1 womöglich in der Adaption an die generelle Nährstoffverfügbarkeit sowie in der Antwort auf Stresssignale beteiligt ist. Mit dem Fokus auf die Proteinverwertung und stickstoffregulierter Pathogenität wurde die Regulation der wichtigsten sekretierten Protease Sap2 - welche außerdem ein Paradebeispiel für allelische Heterogenität ist - im Detail untersucht. Dabei half der heterogene SAP2-Promoter bei der Identifizierung einer unbeabsichtigten genomischen Veränderung als wahren Grund eines Wachstumsdefektes einer C. albicans Mutante. Zusätzlich wurde der Promotorbereich eingegrenzt, welcher für die unterschiedliche Aktivierung der beiden SAP2 Allele verantwortlich ist. Weiterhin wurden verschiedene cis-aktive Elemente identifiziert, die entweder für eine hohe oder eine niedrige SAP2 Expression benötigt werden. Die Aufnahme von Peptiden, die durch den außerzellulären Verdau entstehen, ist für die Verwertung von Proteinen ebenso wichtig. Deshalb wurde die Funktion und Bedeutung der spezifischen Peptidtransporter anhand von C. albicans Mutanten untersucht, welche Peptide nicht aufnehmen können (opt1Δ/Δ opt2Δ/Δ opt3Δ/Δ opt4Δ/Δ opt5Δ/Δ ptr2Δ/Δ ptr22Δ/Δ Septuplemutanten). Die Überexpression von individuellen Transportern in diesen Septuplemutanten offenbarte unterschiedliche Substratspezifitäten und erweiterte die Spezifität für die OPTs auf Dipeptide, eine komplett neue Facette dieser Transporter. Des Weiteren ermöglichten die Septuplemutanten eine Aufklärung, ob Proteine und Peptide tatsächlich eine wichtige In Vivo Stickstoffquelle für C. albicans sind. Dieses Arbeit zeigte, dass während der kompetitiven Kolonisierung des Mäusedarms die Septuplemutanten wildtypische Fitness aufwiesen. Dies deutet daraufhin, dass weder Proteine noch Peptide eine wichtige Stickstoffquelle für ein effizientes Wachstum in diesem In Vivo Model sind. Die ausreichende Verfügbarkeit der bevorzugten Stickstoffquelle Ammonium unterdrückt die Verwertung von Proteinen und anderen alternativen Stickstoffquellen. Aber auch die Expression von Virulenzattributen, wie die Proteasesekretion und die stickstoffmangel-induzierte Filamentierung, wird durch Ammonium inhibiert. Um zu unterscheiden, ob C. albicans die Ammoniumverfügbarkeit außerzellulär oder in der Zelle bestimmt, wurde das Verhalten auf außerzelluläre Ammoniumkonzentrationen in Mutanten untersucht, welche Ammonium nicht aufnehmen können (mep1Δ/Δ mep2Δ/Δ Mutanten). Diese Arbeit zeigte, dass in diesen Mutanten eine ansonsten inhibierende Ammoniumkonzentration nicht in der Lage war, die Sekretion der Sap2-Protease oder die Arginin-induzierte Hyphenbildung zu unterdrücken. Folglich wird, um die Expression von Virulenzattributen zu regulieren, die Ammoniumverfügbarkeit vorrangig in der Zelle bestimmt. Zusammenfassend erweitert die vorliegende Arbeit das Verständnis zur Regulation der Expression von Virulenzattributen durch die Verfügbarkeit von Stickstoffquellen - insbesondere Proteine und Peptide - die eine Anpassung von C. albicans an ein Leben im menschlichen Wirt ermöglichen. KW - Candida albicans KW - Regulation KW - Stickstoff KW - Virulenz KW - Proteasen KW - Nitrogen KW - SAP2 KW - STP1 KW - peptide KW - transport KW - ammonium KW - protease KW - Proteine Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83076 ER - TY - JOUR A1 - Ehrig, Klaas A1 - Kilinc, Mehmet O. A1 - Chen, Nanhai G. A1 - Stritzker, Jochen A1 - Buckel, Lisa A1 - Zhang, Qian A1 - Szalay, Aladar A. T1 - Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68 JF - Journal of Translational Medicine N2 - Background: Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers. Methods: Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models. Results: In this study we demonstrated for the first time that the replication-competent recombinant VACV GLV-1h68 efficiently infected, replicated in, and subsequently lysed various human colorectal cancer lines (Colo 205, HCT-15, HCT-116, HT-29, and SW-620) derived from patients at all four stages of disease. Additionally, in tumor xenograft models in athymic nude mice, a single injection of intravenously administered GLV-1h68 significantly inhibited tumor growth of two different human colorectal cell line tumors (Duke’s type A-stage HCT-116 and Duke’s type C-stage SW-620), significantly improving survival compared to untreated mice. Expression of the viral marker gene ruc-gfp allowed for real-time analysis of the virus infection in cell cultures and in mice. GLV-1h68 treatment was well-tolerated in all animals and viral replication was confined to the tumor. GLV-1h68 treatment elicited a significant up-regulation of murine immune-related antigens like IFN-γ, IP-10, MCP-1, MCP-3, MCP-5, RANTES and TNF-γ and a greater infiltration of macrophages and NK cells in tumors as compared to untreated controls. Conclusion: The anti-tumor activity observed against colorectal cancer cells in these studies was a result of direct viral oncolysis by GLV-1h68 and inflammation-mediated innate immune responses. The therapeutic effects occurred in tumors regardless of the stage of disease from which the cells were derived. Thus, the recombinant vaccinia virus GLV-1h68 has the potential to treat colorectal cancers independently of the stage of progression. KW - oncolytic virotherapy KW - colorectal KW - vaccinia virus KW - cancer KW - metastasis Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129619 VL - 11 IS - 79 ER - TY - JOUR A1 - Feller, Tatjana A1 - Thom, Pascal A1 - Koch, Natalie A1 - Spiegel, Holger A1 - Addai-Mensah, Otchere A1 - Fischer, Rainer A1 - Reimann, Andreas A1 - Pradel, Gabriele A1 - Fendel, Rolf A1 - Schillberg, Stefan A1 - Scheuermayer, Matthias A1 - Schinkel, Helga T1 - Plant-Based Production of Recombinant Plasmodium Surface Protein Pf38 and Evaluation of its Potential as a Vaccine Candidate JF - PLOS ONE N2 - Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and \(MSP1_{19}\). Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1:11.000 and 1:39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using \(\alpha Pf38\) antibodies demonstrated strong inhibition \((\geq 60 \% ) \) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by \(\alpha Pf38\) antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine. KW - malaria vaccine KW - balancing selection KW - N-glycans KW - falciparum KW - expression KW - antibodies KW - identification KW - transmission KW - tobacco KW - antigen Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128221 SN - 1932-6203 VL - 8 IS - 11 ER - TY - JOUR A1 - Gholami, Sepideh A1 - Chen, Chun-Hao A1 - Belin, Laurence J. A1 - Lou, Emil A1 - Fujisawa, Sho A1 - Antonacci, Caroline A1 - Carew, Amanda A1 - Chen, Nanhai G. A1 - De Brot, Marina A1 - Zanzonico, Pat B. A1 - Szalay, Aladar A. A1 - Fong, Yuman T1 - Vaccinia virus GLV-1h153 is a novel agent for detection and effective local control of positive surgical margins for breast cancer JF - Breast Cancer Research N2 - Introduction: Surgery is currently the definitive treatment for early-stage breast cancer. However, the rate of positive surgical margins remains unacceptably high. The human sodium iodide symporter (hNIS) is a naturally occurring protein in human thyroid tissue, which enables cells to concentrate radionuclides. The hNIS has been exploited to image and treat thyroid cancer. We therefore investigated the potential of a novel oncolytic vaccinia virus GLV1h-153 engineered to express the hNIS gene for identifying positive surgical margins after tumor resection via positron emission tomography (PET). Furthermore, we studied its role as an adjuvant therapeutic agent in achieving local control of remaining tumors in an orthotopic breast cancer model. Methods: GLV-1h153, a replication-competent vaccinia virus, was tested against breast cancer cell lines at various multiplicities of infection (MOIs). Cytotoxicity and viral replication were determined. Mammary fat pad tumors were generated in athymic nude mice. To determine the utility of GLV-1h153 in identifying positive surgical margins, 90% of the mammary fat pad tumors were surgically resected and subsequently injected with GLV-1h153 or phosphate buffered saline (PBS) in the surgical wound. Serial Focus 120 microPET images were obtained six hours post-tail vein injection of approximately 600 mu Ci of I-124-iodide. Results: Viral infectivity, measured by green fluorescent protein (GFP) expression, was time-and concentrationdependent. All cell lines showed less than 10% of cell survival five days after treatment at an MOI of 5. GLV-1h153 replicated efficiently in all cell lines with a peak titer of 27 million viral plaque forming units (PFU) ( < 10,000-fold increase from the initial viral dose) by Day 4. Administration of GLV-1h153 into the surgical wound allowed positive surgical margins to be identified via PET scanning. In vivo, mean volume of infected surgically resected residual tumors four weeks after treatment was 14 mm(3) versus 168 mm(3) in untreated controls (P < 0.05). Conclusions: This is the first study to our knowledge to demonstrate a novel vaccinia virus carrying hNIS as an imaging tool in identifying positive surgical margins of breast cancers in an orthotopic murine model. Moreover, our results suggest that GLV-1h153 is a promising therapeutic agent in achieving local control for positive surgical margins in resected breast tumors. KW - conservation KW - carcinoma KW - mastectomy KW - metastases KW - stage-i KW - thyroid-cancer KW - radiation-therapy KW - conserving surgery KW - sodium-iodide symporter Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122140 VL - 15 IS - R26 ER - TY - JOUR A1 - Hertlein, Tobias A1 - Sturm, Volker A1 - Jakob, Peter A1 - Ohlsen, Knut T1 - \(^{19}\)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model JF - PLoS ONE N2 - Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of \(^{19}\)F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of \(^{19}\)F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the \(^{19}\)F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions \(^{19}\)F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. KW - staphylococcus aureus KW - abscesses KW - vancomycin KW - antibiotics KW - magnetic resonance imaging KW - emulsions KW - bioluminescence imaging KW - in vivo imaging Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130113 VL - 8 IS - 5 ER - TY - JOUR A1 - Makgotlho, Phuti E. A1 - Marincola, Gabriella A1 - Schäfer, Daniel A1 - Liu, Quian A1 - Bae, Taeok A1 - Geiger, Tobias A1 - Wasserman, Elizabeth A1 - Wolz, Christine A1 - Ziebuhr, Wilma A1 - Sinha, Bhanu T1 - SDS Interferes with SaeS Signaling of Staphylococcus aureus Independently of SaePQ JF - PLOS ONE N2 - The Staphylococcus aureus regulatory saePQRS system controls the expression of numerous virulence factors, including extracellular adherence protein (Eap), which amongst others facilitates invasion of host cells. The saePQRS operon codes for 4 proteins: the histidine kinase SaeS, the response regulator SaeR, the lipoprotein SaeP and the transmembrane protein SaeQ. S. aureus strain Newman has a single amino acid substitution in the transmembrane domain of SaeS (L18P) which results in constitutive kinase activity. SDS was shown to be one of the signals interfering with SaeS activity leading to inhibition of the sae target gene eap in strains with SaeS(L) but causing activation in strains containing SaeS(P). Here, we analyzed the possible involvement of the SaeP protein and saePQ region in SDS-mediated sae/eap expression. We found that SaePQ is not needed for SDS-mediated SaeS signaling. Furthermore, we could show that SaeS activity is closely linked to the expression of Eap and the capacity to invade host cells in a number of clinical isolates. This suggests that SaeS activity might be directly modulated by structurally non-complex environmental signals, as SDS, which possibly altering its kinase/phosphatase activity. KW - host-cell invasion KW - 2-component system KW - strain Newman KW - allelic replacement KW - genome sequence KW - locus KW - gene KW - activation KW - expression KW - infection Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128469 SN - 1932-6203 VL - 8 IS - 8 ER - TY - JOUR A1 - Maudet, Claire A1 - Sourisce, Adèle A1 - Dragin, Loïc A1 - Lahouassa, Hichem A1 - Rain, Jean-Christopher A1 - Bouaziz, Serge A1 - Ramirez, Bertha Cécilia A1 - Margottin-Goguet, Florence T1 - HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling Complex, by Hijacking DCAF1/VprBP JF - PLOS ONE N2 - The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered. KW - immunodeficiency-virus type-1 KW - MI-2/NURD complex KW - cell-cycle arrest KW - CUL4-DDB1 ubiquitin ligase KW - viral protein-R KW - NF-KAPPA-B KW - macrophage infection KW - enzyme APOBEC3G KW - in-vivo KW - transcription Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128316 SN - 1932-6203 VL - 8 IS - 10 ER -