TY - THES A1 - Nürnberger, Fabian T1 - Timing of colony phenology and foraging activity in honey bees T1 - Zeitliche Koordination von Koloniephänologie und Sammelaktivität bei Honigbienen N2 - I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment. N2 - I. Zeitliche Koordination ist äußerst wichtig für Organismen, die in einer variablen und sich wandelnden Umwelt leben. Komplexe Mechanismen, die das Messen von Zeit ermöglichen, sind weit verbreitet und wurden bei vielen Taxa aufgezeigt. Es wird generell angenommen, dass diese Mechanismen Fitnessvorteile verschaffen, indem sie es Organismen ermöglichen, Umweltveränderungen vorherzusehen und sich entsprechen anzupassen. Allerdings gibt es bisher nur sehr wenige Studien zum adaptiven Wert einer guten zeitlichen Koordination. Ziel dieses Dissertations-Projekts war es, Mechanismen der zeitlichen Koordination bei Honigbienen (Apis mellifera) zu erforschen und deren Bedeutung für die Fitness des Honigbienenvolks zu identifizieren. In Kapitel II präsentiere ich meine Studie über die Konsequenzen eines falsch gewählten Zeitpunkts für den Brutbeginn am Ende des Winters und der daraus folgenden gestörten Synchronisation zwischen der Phänologie von Honigbienenvölkern und der lokalen Umwelt. In einem Folgeexperiment wurde die Bedeutung von Umweltfaktoren für das Timing des Brutbeginns untersucht (Kapitel III). Die Studie in Kapitel IV zielt darauf ab, erstmalig den Beweis zu erbringen, dass Honigbienen das „Intervall time-place learning“, d.h. die Fähigkeit, Zeitintervalle zwischen Ereignissen zu lernen und mit deren räumlichen Lage zu assoziieren, beherrschen und, dass diese Fähigkeit beim Sammeln von Ressourcen vorteilhaft ist. Kapitel V untersucht die Fitnessvorteile, die aus dem Austausch von Informationen über ein raumzeitlich heterogenes Ressourcenumfeld zwischen Stockgenossinnen mit Hilfe des Schwänzeltanzes gezogen werden. II. In der Studie, die in Kapitel II präsentiert wird, wurde die Bedeutung des Brutbeginns als entscheidender Punkt für die Phänologie von Honigbienenvölkern in den gemäßigten Breiten untersucht. Honigbienenvölker wurden an zwei klimatisch unterschiedlichen Standorten überwintert. Indem ein Teil der Völker im Spätwinter zwischen den Standorten ausgetauscht wurde, wurde deren Brutbeginn manipuliert und dadurch die Phänologie bezüglich der lokalen Umwelt desynchronisiert. Das verzögern der Phänologie der Völker verminderte deren Fähigkeit die üppige Frühjahrsblüte zu nutzen. Ein früher Brutbeginn andererseits erhöhte die Belastung der Völker durch den Brutparasiten Varroa destructor im Verlauf der Saison, was sich negativ auf die Menge der Arbeiterinnen im Volk auswirkte. Es gibt also entscheidende gegensätzlich wirkende Faktoren, die den optimalen Zeitpunkt des Brutbeginns bestimmen. Die Studie zeigt zudem warum es wichtig ist, die möglichen Folgen des Klimawandels in einem multitrophischen System zu betrachten statt sich auf einfache Interaktionen zu beschränken. Man kann allgemein folgern, dass das Timing des Brutbeginns einen bedeutenden fitnessrelevanten Schritt in der Phänologie von Honigbienenvölkern darstellt, der stark von klimatischen Bedingungen im Spätwinter beeinflusst wird. Verschiebungen und Fehlanpassungen des Brutbeginns, und damit der Phänologie, durch den Klimawandel können ernsthafte negative Konsequenzen für die Fitness von Honigbienenvölkern haben. III. In Kapitel III beleuchte ich die Bedeutung der Umweltfaktoren Umgebungstemperatur und Photoperiode sowie der verstrichenen Zeit auf das Timing des Brutbeginns. Vierundzwanzig überwinternde Honigbienenvölker wurden in Klimakammern untergebracht und auf sechs unterschiedliche Kombinationen von Temperatur- und Lichtregimes verteilt. Der Brutbeginn wurde nicht-invasiv über den Temperaturverlauf auf der Wabe innerhalb der Wintertraube festgestellt. Das Experiment hat gezeigt, dass die Umgebungstemperatur eine entscheidende Rolle beim Timing des Brutbeginns spielt. Allerdings wurde die Reaktion der Völker auf einen Temperaturanstieg vom jeweils vorherrschenden Lichtregime beeinflusst. Zudem deuten die Daten auf die Beteiligung einer inneren Uhr hin. Ich folgere, dass das Timing des Brutbeginns durch ein komplexes System geregelt wird, das wahrscheinlich anfällig für Einflüsse durch den Klimawandel und insbesondere durch Warmwetterphasen im Winter ist. IV. In Kapitel IV meiner Dissertation wird eine Studie präsentiert, die untersucht ob Bienen die Befähigung zum „Intervall time-place learning“ besitzen und ob diese Fähigkeit die Sammeleffizienz in einem dynamischen Ressourcenumfeld verbessert. In einer Feldstudie mit künstlichen Futterquellen zeigten Sammelbienen, dass sie in der Lage waren, Zeitintervalle zu lernen und das Wissen zu nutzen, um die Zeiten vorherzusehen zu denen die Futterquellen aktiv waren. Dieses Lernverhalten ermöglichte es den Sammelbienen, ihre Nektaraufnahmerate zu steigern. Es wurde gefolgert, dass „Intervall time-place learning“ Sammelbienen dabei helfen kann, sich in einem Blühressourcenumfeld mit komplexen und variablen Zeitmustern zurechtzufinden. V. Diese Studie, die in Kapitel V präsentiert wird, untersuchte die Bedeutung der Schwänzeltanzkommunikation der Honigbienen für die raumzeitliche Koordination der Sammelaktivität des Volkes innerhalb eines Ressourcenumfelds, das täglich variieren kann. Die Folgen der Störung der instruktiven Komponenten des Schwänzeltanzes wurden in acht unterschiedlich komplex strukturierten Landschaften innerhalb der gemäßigten Breiten ermessen. Während kein Einfluss auf den Nektarsammelerfolg festgestellt werden konnte, wurde jedoch gezeigt, dass der Pollensammelerfolg, unabhängig von der raumzeitlichen Komplexität der Landschaft, stark von der Schwänzeltanzkommunikation profitiert. Der Grund dafür liegt vermutlich darin, dass Honigbienen vorzugsweise Pollen in halbnatürlichen Habitaten sammeln, die eine hohe Ressourcenvielfalt bieten, aber in intensiv agrarwirtschaftlich genutzten Landschaften eher selten und relativ schwer zu finden sind. Die Studie lässt schließen, dass die Schwänzeltanzkommunikation dabei hilft, eine ausreichende und diverse Pollenernährung zu gewährleisten und damit eine große Rolle für die Gesundheit von Honigbienenvölkern spielt. VI. Ich konnte in meinem Dissertationsprojekt zeigen, dass Honigbienen in der Lage sind ihre Aktivitäten an eine sich jahreszeitlich und täglich verändernde Umwelt anzupassen. Eine gute zeitliche Koordination hat Einfluss auf Sammelerfolg, Volksentwicklung, Gesundheit und letztlich auf die Fitness des Volkes. Allerdings gefährdet der voranschreitende globale Wandel die zeitliche Koordination der Honigbienenvölker. Der Klimawandel hat das Potenzial, zeitliche Anpassungen an die lokale Umwelt zu stören. Die Intensivierung der Landwirtschaft und der damit einhergehende Verlust von Pflanzenvielfalt sowie die kurzen Zeiträume von extrem hohem Ressourcenangebot, gefolgt von einer ausgeprägten Blühlücke, erhöht die Wahrscheinlichkeit, dass zeitlich Fehlanpassungen auftreten. In einer derartigen Umwelt könnte selbst das höchst effiziente Ressourcensammelsystem der Honigbienen nicht mehr genügen, um eine ausreichende, vielfältige und gesunde Ernährung zu gewährleisten. Die globale Verbreitung der parasitischen Varroamilbe durch den Menschen und die erhöhte Belastung durch Pestizide verschlechtert zusätzlich den Gesundheitszustand der Honigbienen. Das wiederum kann sich negativ auf das Lernvermögen und des Weiteren auf die Kommunikation und soziale Organisation der Völker auswirken und dadurch deren Fähigkeit, sich an eine veränderliche Umwelt anzupassen unterwandern. KW - Biene KW - Phänologie KW - Kommunikation KW - Soziale Insekten KW - Apis mellifera KW - foraging KW - brood rearing KW - temperate zones KW - waggle dance KW - hibernation KW - climate change KW - varroa KW - Timing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155105 ER - TY - THES A1 - Schenk [née Wolf], Mariela T1 - Timing of wild bee emergence: mechanisms and fitness consequences T1 - Zeitliche Abstimmung des Bienenschlupfes: Mechanismen und Fitnesskonsequenzen N2 - Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in Würzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately. N2 - Solitäre Bienen aus gemäßigten Breiten müssen ihre Lebenszyklen vorteilhaften Umweltbedingungen und –ressourcen angleichen. Deshalb ist ein gutes Timing ihrer saisonalen Tätigkeit von höchster Relevanz. Die meisten Arten aus gemäßigten Breiten nutzen Temperatur als Trigger um ihre saisonale Aktivität zeitlich abzustimmen. Aus diesem Grund kann der Klimawandel die mutualistischen Interaktionen zwischen Bienen- und Pflanzenarten stören, falls steigende Temperaturen das Timing der Interaktionspartner unterschiedlich verändern. Das Ziel dieser Doktorarbeit war es, die Timing-Mechanismen von Frühlingsbienenarten zu untersuchen, sowie die resultierenden Fitnessfolgen, falls zeitliche Fehlabstimmungen zu ihren Wirtspflanzen eintreten sollten. In meinen Experimenten konzentrierte ich mich auf Frühlingsbienenarten der Gattung Osmia (Mauerbienen) und dabei vor allem auf zwei spezielle Arten, nämlich O. cornuta und O. bicornis (in meiner Studie, die ich im Kapitel IV meiner Doktorarbeit präsentiere, untersuchte ich zusätzlich noch eine dritte Bienenart: O. brevicornis). Kapitel II präsentiert eine Studie, in der ich verschiedene Trigger untersuchte, die solitäre Bienen nutzen um ihren Schlupfzeitpunkt im Frühjahr festzulegen. Dazu untersuchte ich in einem Klimakammerexperiment den Zusammenhang zwischen Überwinterungstemperaturen, Körpergröße, Körpergewicht und Schlupftag. Zusätzlich entwickelte ich ein einfaches mechanistisches Modell, welches mir ermöglichte, meine verschiedenen Ergebnisse in einem einheitlichen Rahmen zusammenzufügen. In Kombination mit den empirischen Daten deutet das Modell stark darauf hin, dass Bienen einen strategischen Ansatz verfolgen und genau an dem Tag schlüpfen, der für ihre individuelle Fitnesserwartung am sinnvollsten ist. Ich konnte zeigen, dass dieser gewählte Schlupftag einerseits temperaturabhängig ist, da wärmere Temperaturen den Gewichtverlust der Bienen während der Überwinterung steigern, was wiederum den optimalen Schlupftag auf einem früheren Zeitpunkt verschiebt, andererseits konnte ich ebenfalls zeigen, dass der optimale Schlupfzeitpunkt von der individuellen Körpergröße bzw. dem Körpergewicht der Biene abhängt, da diese ihren Schlupftag danach abstimmen. Meine Daten zeigen, dass es nicht reicht alleinig Temperatureffekte auf das Timing der solitären Bienen zu untersuchen, sondern dass wir ebenfalls die Körperkonditionen der Bienen beachten sollten, um die zeitliche Abstimmung des Bienenschlupfes besser verstehen zu können. In Kapitel III präsentiere ich eine Studie, in der ich den Temperatureinfluss auf den Schlupftermin solitärer Bienen detailreicher untersuchte. Dazu habe ich verschiedene Varianten von Temperatursummen-Modellen getestet, um Temperaturzeitreihen auf Schlupftermine zu beziehen. Die grundlegende Funktionsweise solcher Temperatursummen-Modelle ist, dass der Bienenschlupf auf den Tag prognostiziert wird an dem die Bienen eine bestimmte Menge an Temperatursummen aufsummiert haben. Ich konnte zeigen, dass Bienen Temperatursummen erst ab bestimmten Temperaturen bilden (ab circa 4°C bei O. cornuta und circa 7°C bei O. bicornis) und erst nach Erreichen eines bestimmten Kalendertages (circa 10.März bei O. cornuta und circa 28.März bei O. bicornis). Solch ein bestimmter Kalendertag, vor dessen Erreichen und unabhängig von der aktuellen Temperatur keine Temperatursummen gebildet werden, wird grundsätzlich recht selten verwendet und in Phänologie-Modellen zur Vorhersage des Bienenschlupfes, bis heute auch nur zwei Mal. Zusätzlich benutzte ich mein Modell, um rückwirkend den Bienenschlupf über die letzten Jahrzehnte vorherzusagen. Dazu wandte ich das Modell auf Langzeit-Temperaturdaten an, die von der regionalen Wetterstation in Würzburg aufgezeichnet wurden. Das Modell prognostizierte rückwirkend, dass im Verlauf der letzten 63 Jahre die Bienen ungefähr 4 Tage früher schlüpfen. In Kapitel IV präsentiere ich eine Studie, in der ich untersuchte, inwieweit zeitliche Fehlabstimmungen in Bienen-Pflanzen-Interaktionen die Fitness der solitären Bienen beeinflussen. Dazu führte ich ein Experiment mit großen Flugkäfigen durch, die als Mesokosmos dienten. Innerhalb jedes dieser Mesokosmen manipulierte ich das Angebot an Blüten um Bienen-Pflanzen-Interaktionen wahlweise zu synchronisieren oder zu desynchronisieren. Zusammengefasst konnte ich dabei aufzeigen, dass sogar kurze zeitliche Fehlabstimmungen von drei oder sechs Tagen bereits genügen (Bienen schlüpften zeitlich vor dem Erscheinen der Pflanzen) um bei den Bienen fatale Fitnessfolgen zu verursachen. Nichtsdestotrotz konnte ich bei den Bienen verschiedene Strategien erkennen, mit denen sie Auswirkungen auf ihre Fitness nach zeitlichen Fehlabstimmungen entgegenwirken wollten. Allerdings könnten diese Strategien zu sekundären Fitnessverlusten folgen da sie zu einem veränderten Geschlechterverhältnis oder einem stärkeren Prasitierungsgrad führen. Deshalb konnte ich zusammenfassend feststellen, dass nach zeitlichen Fehlabstimmungen zu den entsprechenden Wirtspflanzen, die Kompensationsstrategien der Bienen nicht ausreichen, um Fitnessverlusste zu minimieren. Im Falle des weiter voranschreitenden Klimawandel könnten die Fitnessverluste der Bienen nicht nur das momentane Bienensterben weiter verschärfen, sondern auch ihren Bestäubungsdienst an später blühenden Arten minimieren und dadurch Populationen von tierbestäubten Pflanzen beeinträchtigen. Zusammenfassend konnte ich zeigen, dass Frühlingsbienenarten anfällig für Klimawandel sind, da sie nach warmen Überwinterungstemperaturen früher schlüpfen und einen geringeren Fitnesszustand aufweisen. Da Frühlingsbienenarten bei der zeitlichen Abstimmung ihres Schlupftages nicht nur Überwinterungstemperaturen, sondern auch ihren individuellen Fitnesszustand beachten, könnte dies unterschiedliche Reaktionen innerhalb oder zwischen Bienenpopulationen auf den Klimawandel erklären. Dies könnte ebenfalls Folgen für Bienen-Pflanzen Interaktionen haben und das weitere Bestehen von Bienenpopulationen gefährden. Falls, durch den Klimawandel bedingt, Pflanzenarten ihre Phänologie nicht in Einklang mit der Phänologie der Bienen verschieben, dann könnten Bienen zeitliche Fehlabstimmungen mit ihren Wirtspflanzen erleben. Da Bienen keine einzige Kompensationsmaßnahme aufzeigen, die erfolgreich Fitnessverlusten entgegenwirken konnte, wären in einem solchen Fall die Folgen für Frühlingsbienenarten fatal. Darüber hinaus konnte ich feststellen, dass Frühlingsbienen einen bestimmten Starttag im Jahr beachten, vor dessen Erreichen sie keine Temperatursummen bilden, unabhängig von der aktuellen Temperatur. Ich schlage deshalb vor, dass weitere Studien ebenfalls einen solchen Starttag in Temperatursummen-Modelle einbauen sollten, um die Genauigkeit zur Berechnung des Bienenschlupfes weiter zu verbessern. Obwohl meine retrospektive Vorhersage zum verfrühten Bienenschlupf ziemlich genau den Ergebnissen von verschiedenen Studien zu den phänologischen Verschiebungen von Pflanzenarten entspricht, schlagen wir vor, dass zusätzliche Untersuchungen konzipiert werden müssen um präzisere Aussagen über die Folgen des Klimawandels auf die Synchronisation der Bienen-Pflanzen-Interaktionen liefern zu können. KW - wild bees KW - timing KW - fitness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161565 ER -