TY - JOUR T1 - Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube JF - The Astrophysical Journal N2 - Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes. KW - gravitational waves KW - neutrinos KW - Electromagnetic signals KW - Events GW150914 KW - ray KW - emission Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-360189 VL - 870 IS - 2 PB - The American Astronomical Society ER - TY - JOUR A1 - Albrecht, Franziska A1 - Mueller, Karsten A1 - Ballarini, Tommaso A1 - Lampe, Leonie A1 - Diehl-Schmid, Janine A1 - Fassbender, Klaus A1 - Fliessbach, Klaus A1 - Jahn, Holger A1 - Jech, Robert A1 - Kassubek, Jan A1 - Kornhuber, Johannes A1 - Landwehrmeyer, Bernhard A1 - Lauer, Martin A1 - Ludolph, Albert C. A1 - Lyros, Epameinondas A1 - Prudlo, Johannes A1 - Schneider, Anja A1 - Synofzik, Matthis A1 - Wiltfang, Jens A1 - Danek, Adrian A1 - Otto, Markus A1 - Schroeter, Matthias L. T1 - Unraveling corticobasal syndrome and alien limb syndrome with structural brain imaging JF - Cortex N2 - Alien limb phenomenon is a rare syndrome associated with a feeling of non-belonging and disowning toward one's limb. In contrast, anarchic limb phenomenon leads to involuntary but goal-directed movements. Alien/anarchic limb phenomena are frequent in corticobasal syndrome (CBS), an atypical parkinsonian syndrome characterized by rigidity, akinesia, dystonia, cortical sensory deficit, and apraxia. The structure function relationship of alien/anarchic limb was investigated in multi centric structural magnetic resonance imaging (MRI) data. Whole-group and single subject comparisons were made in 25 CBS and eight CBS-alien/anarchic limb patients versus controls. Support vector machine was used to see if CBS with and without alien/anarchic limb could be distinguished by structural MRI patterns. Whole-group comparison of CBS versus controls revealed asymmetric frontotemporal atrophy. CBS with alien/anarchic limb syndrome versus controls showed frontoparietal atrophy including the supplementary motor area contralateral to the side of the affected limb. Exploratory analysis identified frontotemporal regions encompassing the pre-/and postcentral gyrus as compromised in CBS with alien limb syndrome. Classification of CBS patients yielded accuracies of 79%. CBS-alien/anarchic limb syndrome was differentiated from CBS patients with an accuracy of 81%. Predictive differences were found in the cingulate gyrus spreading to frontomedian cortex, postcentral gyrus, and temporoparietoocipital regions. We present the first MRI-based group analysis on CBS-alien/anarchic limb. Results pave the way for individual clinical syndrome prediction and allow understanding the underlying neurocognitive architecture. (C) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). KW - Alien limb syndrome KW - Anarchic limb syndrome KW - Corticobasal syndrome KW - Diagnosis prediction KW - Support vector machine Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221040 VL - 117 ER - TY - JOUR A1 - Annunziata, Ida A1 - van de Vlekkert, Diantha A1 - Wolf, Elmar A1 - Finkelstein, David A1 - Neale, Geoffrey A1 - Machado, Eda A1 - Mosca, Rosario A1 - Campos, Yvan A1 - Tillman, Heather A1 - Roussel, Martine F. A1 - Weesner, Jason Andrew A1 - Fremuth, Leigh Ellen A1 - Qiu, Xiaohui A1 - Han, Min-Joon A1 - Grosveld, Gerard C. A1 - d'Azzo, Alessandra T1 - MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat JF - Nature Communications N2 - Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically. KW - autophagy KW - cancer KW - cancer metabolism KW - cell biology KW - mechanisms of disease Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221189 VL - 10 ER - TY - JOUR A1 - Al-Zaben, Naim A1 - Medyukhina, Anna A1 - Dietrich, Stefanie A1 - Marolda, Alessandra A1 - Hünniger, Kerstin A1 - Kurzai, Oliver A1 - Figge, Marc Thilo T1 - Automated tracking of label-free cells with enhanced recognition of whole tracks JF - Scientific Reports N2 - Migration and interactions of immune cells are routinely studied by time-lapse microscopy of in vitro migration and confrontation assays. To objectively quantify the dynamic behavior of cells, software tools for automated cell tracking can be applied. However, many existing tracking algorithms recognize only rather short fragments of a whole cell track and rely on cell staining to enhance cell segmentation. While our previously developed segmentation approach enables tracking of label-free cells, it still suffers from frequently recognizing only short track fragments. In this study, we identify sources of track fragmentation and provide solutions to obtain longer cell tracks. This is achieved by improving the detection of low-contrast cells and by optimizing the value of the gap size parameter, which defines the number of missing cell positions between track fragments that is accepted for still connecting them into one track. We find that the enhanced track recognition increases the average length of cell tracks up to 2.2-fold. Recognizing cell tracks as a whole will enable studying and quantifying more complex patterns of cell behavior, e.g. switches in migration mode or dependence of the phagocytosis efficiency on the number and type of preceding interactions. Such quantitative analyses will improve our understanding of how immune cells interact and function in health and disease. KW - image processing KW - software Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221093 VL - 9 ER - TY - JOUR A1 - Dammert, Marcel A. A1 - Brägelmann, Johannes A1 - Olsen, Rachelle R. A1 - Böhm, Stefanie A1 - Monhasery, Niloufar A1 - Whitney, Christopher P. A1 - Chalishazar, Milind D. A1 - Tumbrink, Hannah L. A1 - Guthrie, Matthew R. A1 - Klein, Sebastian A1 - Ireland, Abbie S. A1 - Ryan, Jeremy A1 - Schmitt, Anna A1 - Marx, Annika A1 - Ozretić, Luka A1 - Castiglione, Roberta A1 - Lorenz, Carina A1 - Jachimowicz, Ron D. A1 - Wolf, Elmar A1 - Thomas, Roman K. A1 - Poirier, John T. A1 - Büttner, Reinhard A1 - Sen, Triparna A1 - Byers, Lauren A. A1 - Reinhardt, H. Christian A1 - Letai, Anthony A1 - Oliver, Trudy G. A1 - Sos, Martin L. T1 - MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer JF - Nature Communications N2 - MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients. KW - genetic engineering KW - oncogenes KW - small-cell lung cancer KW - targeted therapies Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223569 VL - 10 ER - TY - JOUR A1 - Dekker, Annelot M. A1 - Diekstra, Frank P. A1 - Pulit, Sara L. A1 - Tazelaar, Gijs H. P. A1 - van der Spek, Rick A. A1 - van Rheenen, Wouter A1 - van Eijk, Kristel R. A1 - Calvo, Andrea A1 - Brunetti, Maura A1 - Van Damme, Philip A1 - Robberecht, Wim A1 - Hardiman, Orla A1 - McLaughlin, Russell A1 - Chiò, Adriano A1 - Sendtner, Michael A1 - Ludolph, Albert C. A1 - Weishaupt, Jochen H. A1 - Pardina, Jesus S. Mora A1 - van den Berg, Leonard H. A1 - Veldink, Jan H. T1 - Exome array analysis of rare and low frequency variants in amyotrophic lateral sclerosis JF - Scientific Reports N2 - Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects 1 in ~350 individuals. Genetic association studies have established ALS as a multifactorial disease with heritability estimated at ~61%, and recent studies show a prominent role for rare variation in its genetic architecture. To identify rare variants associated with disease onset we performed exome array genotyping in 4,244 cases and 3,106 controls from European cohorts. In this largest exome-wide study of rare variants in ALS to date, we performed single-variant association testing, gene-based burden, and exome-wide individual set-unique burden (ISUB) testing to identify single or aggregated rare variation that modifies disease risk. In single-variant testing no variants reached exome-wide significance, likely due to limited statistical power. Gene-based burden testing of rare non-synonymous and loss-of-function variants showed NEK1 as the top associated gene. ISUB analysis did not show an increased exome-wide burden of deleterious variants in patients, possibly suggesting a more region-specific role for rare variation. Complete summary statistics are released publicly. This study did not implicate new risk loci, emphasizing the immediate need for future large-scale collaborations in ALS that will expand available sample sizes, increase genome coverage, and improve our ability to detect rare variants associated to ALS. KW - amyotrophic lateral sclerosis KW - genome-wide association studies Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223686 VL - 9 ER - TY - JOUR A1 - Diehl-Schmid, Janine A1 - Licata, Abigail A1 - Goldhardt, Oliver A1 - Förstl, Hans A1 - Yakushew, Igor A1 - Otto, Markus A1 - Anderl-Straub, Sarah A1 - Beer, Ambros A1 - Ludolph, Albert Christian A1 - Landwehrmeyer, Georg Bernhard A1 - Levin, Johannes A1 - Danek, Adrian A1 - Fliessbach, Klaus A1 - Spottke, Annika A1 - Fassbender, Klaus A1 - Lyros, Epameinondas A1 - Prudlo, Johannes A1 - Krause, Bernd Joachim A1 - Volk, Alexander A1 - Edbauer, Dieter A1 - Schroeter, Matthias Leopold A1 - Drzezga, Alexander A1 - Kornhuber, Johannes A1 - Lauer, Martin A1 - Grimmer, Timo T1 - FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations JF - Translational Psychiatry N2 - C9ORF72 mutations are the most common cause of familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). MRI studies have investigated structural changes in C9ORF72-associated FTLD (C9FTLD) and provided first insights about a prominent involvement of the thalamus and the cerebellum. Our multicenter, 18F-fluorodeoxyglucose positron-emission tomography study of 22 mutation carriers with FTLD, 22 matched non-carriers with FTLD, and 23 cognitively healthy controls provided valuable insights into functional changes in C9FTLD: compared to non-carriers, mutation carriers showed a significant reduction of glucose metabolism in both thalami, underscoring the key role of the thalamus in C9FTLD. Thalamic metabolism did not correlate with disease severity, duration of disease, or the presence of psychotic symptoms. Against our expectations we could not demonstrate a cerebellar hypometabolism in carriers or non-carriers. Future imaging and neuropathological studies in large patient cohorts are required to further elucidate the central role of the thalamus in C9FTLD. KW - diagnostic markers KW - psychiatric disorders Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225308 VL - 9 ER - TY - JOUR A1 - Dörk, Thilo A1 - Peterlongo, Peter A1 - Mannermaa, Arto A1 - Bolla, Manjeet K. A1 - Wang, Qin A1 - Dennis, Joe A1 - Ahearn, Thomas A1 - Andrulis, Irene L. A1 - Anton-Culver, Hoda A1 - Arndt, Volker A1 - Aronson, Kristan J. A1 - Augustinsson, Annelie A1 - Beane Freeman, Laura E. A1 - Beckmann, Matthias W. A1 - Beeghly-Fadiel, Alicia A1 - Behrens, Sabine A1 - Bermisheva, Marina A1 - Blomqvist, Carl A1 - Bogdanova, Natalia V. A1 - Bojesen, Stig E. A1 - Brauch, Hiltrud A1 - Brenner, Hermann A1 - Burwinkel, Barbara A1 - Canzian, Federico A1 - Chan, Tsun L. A1 - Chang-Claude, Jenny A1 - Chanock, Stephen J. A1 - Choi, Ji-Yeob A1 - Christiansen, Hans A1 - Clarke, Christine L. A1 - Couch, Fergus J. A1 - Czene, Kamila A1 - Daly, Mary B. A1 - dos-Santos-Silva, Isabel A1 - Dwek, Miriam A1 - Eccles, Diana M. A1 - Ekici, Arif B. A1 - Eriksson, Mikael A1 - Evans, D. Gareth A1 - Fasching, Peter A. A1 - Figueroa, Jonine A1 - Flyger, Henrik A1 - Fritschi, Lin A1 - Gabrielson, Marike A1 - Gago-Dominguez, Manuela A1 - Gao, Chi A1 - Gapstur, Susan M. A1 - García-Closas, Montserrat A1 - García-Sáenz, José A. A1 - Gaudet, Mia M. A1 - Giles, Graham G. A1 - Goldberg, Mark S. A1 - Goldgar, David E. A1 - Guenél, Pascal A1 - Haeberle, Lothar A1 - Haimann, Christopher A. A1 - Håkansson, Niclas A1 - Hall, Per A1 - Hamann, Ute A1 - Hartman, Mikael A1 - Hauke, Jan A1 - Hein, Alexander A1 - Hillemanns, Peter A1 - Hogervorst, Frans B. L. A1 - Hooning, Maartje J. A1 - Hopper, John L. A1 - Howell, Tony A1 - Huo, Dezheng A1 - Ito, Hidemi A1 - Iwasaki, Motoki A1 - Jakubowska, Anna A1 - Janni, Wolfgang A1 - John, Esther M. A1 - Jung, Audrey A1 - Kaaks, Rudolf A1 - Kang, Daehee A1 - Kapoor, Pooja Middha A1 - Khusnutdinova, Elza A1 - Kim, Sung-Won A1 - Kitahara, Cari M. A1 - Koutros, Stella A1 - Kraft, Peter A1 - Kristensen, Vessela N. A1 - Kwong, Ava A1 - Lambrechts, Diether A1 - Le Marchand, Loic A1 - Li, Jingmei A1 - Lindström, Sara A1 - Linet, Martha A1 - Lo, Wing-Yee A1 - Long, Jirong A1 - Lophatananon, Artitaya A1 - Lubiński, Jan A1 - Manoochehri, Mehdi A1 - Manoukian, Siranoush A1 - Margolin, Sara A1 - Martinez, Elena A1 - Matsuo, Keitaro A1 - Mavroudis, Dimitris A1 - Meindl, Alfons A1 - Menon, Usha A1 - Milne, Roger L. A1 - Mohd Taib, Nur Aishah A1 - Muir, Kenneth A1 - Mulligan, Anna Marie A1 - Neuhausen, Susan L. A1 - Nevanlinna, Heli A1 - Neven, Patrick A1 - Newman, William G. A1 - Offit, Kenneth A1 - Olopade, Olufunmilayo I. A1 - Olshan, Andrew F. A1 - Olson, Janet E. A1 - Olsson, Håkan A1 - Park, Sue K. A1 - Park-Simon, Tjoung-Won A1 - Peto, Julian A1 - Plaseska-Karanfilska, Dijana A1 - Pohl-Rescigno, Esther A1 - Presneau, Nadege A1 - Rack, Brigitte A1 - Radice, Paolo A1 - Rashid, Muhammad U. A1 - Rennert, Gad A1 - Rennert, Hedy S. A1 - Romero, Atocha A1 - Ruebner, Matthias A1 - Saloustros, Emmanouil A1 - Schmidt, Marjanka K. A1 - Schmutzler, Rita K. A1 - Schneider, Michael O. A1 - Schoemaker, Minouk J. A1 - Scott, Christopher A1 - Shen, Chen-Yang A1 - Shu, Xiao-Ou A1 - Simard, Jaques A1 - Slager, Susan A1 - Smichkoska, Snezhana A1 - Southey, Melissa C. A1 - Spinelli, John J. A1 - Stone, Jennifer A1 - Surowy, Harald A1 - Swerdlow, Anthony J. A1 - Tamimi, Rulla M. A1 - Tapper, William J. A1 - Teo, Soo H. A1 - Terry, Mary Beth A1 - Toland, Amanda E. A1 - Tollenaar, Rob A. E. M. A1 - Torres, Diana A1 - Torres-Mejía, Gabriela A1 - Troester, Melissa A. A1 - Truong, Thérèse A1 - Tsugane, Shoichiro A1 - Untch, Michael A1 - Vachon, Celine M. A1 - van den Ouweland, Ans M. W. A1 - van Veen, Elke M. A1 - Vijai, Joseph A1 - Wendt, Camilla A1 - Wolk, Alicja A1 - Yu, Jyh-Cherng A1 - Zheng, Wei A1 - Ziogas, Argyrios A1 - Ziv, Elad A1 - Dunnig, Alison A1 - Pharaoh, Paul D. P. A1 - Schindler, Detlev A1 - Devilee, Peter A1 - Easton, Douglas F. T1 - Two truncating variants in FANCC and breast cancer risk JF - Scientific Reports N2 - Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44–1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants. KW - oncology KW - risk factors Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222838 VL - 9 ER - TY - JOUR A1 - Steuer Costa, Wagner A1 - Van der Auwera, Petrus A1 - Glock, Caspar A1 - Liewald, Jana F. A1 - Bach, Maximilian A1 - Schüler, Christina A1 - Wabnig, Sebastian A1 - Oranth, Alexandra A1 - Masurat, Florentin A1 - Bringmann, Henrik A1 - Schoofs, Liliane A1 - Stelzer, Ernst H. K. A1 - Fischer, Sabine C. A1 - Gottschalk, Alexander T1 - A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics JF - Nature Communications N2 - Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system. KW - Cellular neuroscience KW - Neural circuits Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223273 VL - 10 ER - TY - JOUR A1 - El-Mesery, Mohamed A1 - Rosenthal, Tina A1 - Rauert-Wunderlich, Hilka A1 - Schreder, Martin A1 - Stühmer, Thorsten A1 - Leich, Ellen A1 - Schlosser, Andreas A1 - Ehrenschwender, Martin A1 - Wajant, Harald A1 - Siegmund, Daniela T1 - The NEDD8-activating enzyme inhibitor MLN4924 sensitizes a TNFR1+ subgroup of multiple myeloma cells for TNF-induced cell death JF - Cell Death & Disease N2 - The NEDD8-activating enzyme (NAE) inhibitor MLN4924 inhibits cullin-RING ubiquitin ligase complexes including the SKP1-cullin-F-box E3 ligase βTrCP. MLN4924 therefore inhibits also the βTrCP-dependent activation of the classical and the alternative NFĸB pathway. In this work, we found that a subgroup of multiple myeloma cell lines (e.g., RPMI-8226, MM.1S, KMS-12BM) and about half of the primary myeloma samples tested are sensitized to TNF-induced cell death by MLN4924. This correlated with MLN4924-mediated inhibition of TNF-induced activation of the classical NFκB pathway and reduced the efficacy of TNF-induced TNFR1 signaling complex formation. Interestingly, binding studies revealed a straightforward correlation between cell surface TNFR1 expression in multiple myeloma cell lines and their sensitivity for MLN4924/TNF-induced cell death. The cell surface expression levels of TNFR1 in the investigated MM cell lines largely correlated with TNFR1 mRNA expression. This suggests that the variable levels of cell surface expression of TNFR1 in myeloma cell lines are decisive for TNF/MLN4924 sensitivity. Indeed, introduction of TNFR1 into TNFR1-negative TNF/MLN4924-resistant KMS-11BM cells, was sufficient to sensitize this cell line for TNF/MLN4924-induced cell death. Thus, MLN4924 might be especially effective in myeloma patients with TNFR1+ myeloma cells and a TNFhigh tumor microenvironment. KW - cancer therapy KW - tumour-necrosis factors Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226666 VL - 10 ER -