TY - JOUR A1 - Egenolf, Nadine A1 - Altenschildesche, Caren Meyer zu A1 - Kreß, Luisa A1 - Eggermann, Katja A1 - Namer, Barbara A1 - Gross, Franziska A1 - Klitsch, Alexander A1 - Malzacher, Tobias A1 - Kampik, Daniel A1 - Malik, Rayaz A. A1 - Kurth, Ingo A1 - Sommer, Claudia A1 - Üçeyler, Nurcan T1 - Diagnosing small fiber neuropathy in clinical practice: a deep phenotyping study JF - Therapeutic Advances in Neurological Disorders N2 - Background and aims: Small fiber neuropathy (SFN) is increasingly suspected in patients with pain of uncertain origin, and making the diagnosis remains a challenge lacking a diagnostic gold standard. Methods: In this case–control study, we prospectively recruited 86 patients with a medical history and clinical phenotype suggestive of SFN. Patients underwent neurological examination, quantitative sensory testing (QST), and distal and proximal skin punch biopsy, and were tested for pain-associated gene loci. Fifty-five of these patients additionally underwent pain-related evoked potentials (PREP), corneal confocal microscopy (CCM), and a quantitative sudomotor axon reflex test (QSART). Results: Abnormal distal intraepidermal nerve fiber density (IENFD) (60/86, 70%) and neurological examination (53/86, 62%) most frequently reflected small fiber disease. Adding CCM and/or PREP further increased the number of patients with small fiber impairment to 47/55 (85%). Genetic testing revealed potentially pathogenic gene variants in 14/86 (16%) index patients. QST, QSART, and proximal IENFD were of lower impact. Conclusion: We propose to diagnose SFN primarily based on the results of neurological examination and distal IENFD, with more detailed phenotyping in specialized centers. KW - algorithm KW - diagnosis KW - neurological examination KW - skin punch biopsy KW - small fiber neuropathy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232019 SN - 1756-2864 VL - 14 ER - TY - THES A1 - Gross, Franziska T1 - Verstärkung von Tumor Treating Fields durch Inhibition der MPS1 Kinase in Glioblastom-Zelllinien T1 - Augmentation of Tumor-Treating-Field (TTField) effects on glioblastoma cells by MPS1 inhibition N2 - Tumor Treating Fields (TTFields) sind alternierende Wechselfelder mit einer intermediären Frequenz und niedrigen Intensität, die zu einer Destabilisierung des Spindelapparates während der Mitose führen. Sie sind als zusätzliche Behandlungsoption bei Glioblastoma multiforme zugelassen. Der mitotische Spindelkontrollpunkt überwacht eine fehlerhafte Anheftung der Spindelfasern von Schwesterchromatiden und leitet Reparaturprozesse ein. Monopolar spindle 1 (MPS1) ist eine Schlüsselkomponente dieses Kontrollpunktes und kann den durch TTFields physikalisch induzierten Spindelschäden entgegenwirken. Durch Zellzahlmessung, Zellzyklusuntersuchungen und durchflusszytometrische Analysen als auch Fluoreszenzfärbungen konnte gezeigt werden, dass eine Inhibition von MPS1 die antimitotischen Wirkungen von TTFields verstärken kann. N2 - Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency approved for the therapy of glioblastoma multiforme. TTFields therapy interrupts the spindle formation through mitosis leading to misalignment of chromosomes. Spindle assembly checkpoint (SAC) and its key component monopolar spindle 1 (MPS1) regulate proper chromosomal arrangement and segregation. Here, we show that through the combination of physically interfering spindle formation by TTFields and chemical inhibition of MPS1, TTFields effects can be augmented promising a new target for multimodal treatment in glioblastoma therapy. KW - Tumortherapiefelder KW - Glioblastom KW - Mitose KW - Apoptosis KW - Aneuploidie KW - Spindle assembly checkpoint KW - Monopolar spindle 1 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211804 ER - TY - JOUR A1 - Kessler, Almuth F. A1 - Frömbling, Greta E. A1 - Gross, Franziska A1 - Hahn, Mirja A1 - Dzokou, Wilfrid A1 - Ernestus, Ralf-Ingo A1 - Löhr, Mario A1 - Hagemann, Carsten T1 - Effects of tumor treating fields (TTFields) on glioblastoma cells are augmented by mitotic checkpoint inhibition JF - Cell Death Discovery N2 - Tumor treating fields (TTFields) are approved for glioblastoma (GBM) therapy. TTFields disrupt cell division by inhibiting spindle fiber formation. Spindle assembly checkpoint (SAC) inhibition combined with antimitotic drugs synergistically decreases glioma cell growth in cell culture and mice. We hypothesized that SAC inhibition will increase TTFields efficacy. Human GBM cells (U-87 MG, GaMG) were treated with TTFields (200 kHz, 1.7 V/cm) and/or the SAC inhibitor MPS1-IN-3 (IN-3, 4 µM). Cells were counted after 24, 48, and 72 h of treatment and at 24 and 72 h after end of treatment (EOT). Flow cytometry, immunofluorescence microscopy, Annexin-V staining and TUNEL assay were used to detect alterations in cell cycle and apoptosis after 72 h of treatment. The TTFields/IN-3 combination decreased cell proliferation after 72 h compared to either treatment alone (−78.6% vs. TTFields, P = 0.0337; −52.6% vs. IN-3, P = 0.0205), and reduced the number of viable cells (62% less than seeded). There was a significant cell cycle shift from G1 to G2/M phase (P < 0.0001). The apoptotic rate increased to 44% (TTFields 14%, P = 0.0002; IN-3 4%, P < 0.0001). Cell growth recovered 24 h after EOT with TTFields and IN-3 alone, but the combination led to further decrease by 92% at 72 h EOT if IN-3 treatment was continued (P = 0.0288). The combination of TTFields and SAC inhibition led to earlier and prolonged effects that significantly augmented the efficacy of TTFields and highlights a potential new targeted multimodal treatment for GBM. Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325744 VL - 4 ER -