TY - THES A1 - Pröll, Sebastian T1 - Stability of Switched Epidemiological Models T1 - Stabilität geschalteter epidemiologischer Modelle N2 - In this thesis it is shown how the spread of infectious diseases can be described via mathematical models that show the dynamic behavior of epidemics. Ordinary differential equations are used for the modeling process. SIR and SIRS models are distinguished, depending on whether a disease confers immunity to individuals after recovery or not. There are characteristic parameters for each disease like the infection rate or the recovery rate. These parameters indicate how aggressive a disease acts and how long it takes for an individual to recover, respectively. In general the parameters are time-varying and depend on population groups. For this reason, models with multiple subgroups are introduced, and switched systems are used to carry out time-variant parameters. When investigating such models, the so called disease-free equilibrium is of interest, where no infectives appear within the population. The question is whether there are conditions, under which this equilibrium is stable. Necessary mathematical tools for the stability analysis are presented. The theory of ordinary differential equations, including Lyapunov stability theory, is fundamental. Moreover, convex and nonsmooth analysis, positive systems and differential inclusions are introduced. With these tools, sufficient conditions are given for the disease-free equilibrium of SIS, SIR and SIRS systems to be asymptotically stable. N2 - In der vorliegenden Arbeit werden Möglichkeiten aufgezeigt, wie man die Ausbreitung von Infektionskrankheiten mit Hilfe von mathematischen Modellen beschreiben kann. Anhand solcher Modelle möchte man mehr über die Dynamik von Epidemien lernen und vorhersagen, wie sich eine gegebene Infektionskrankheit innerhalb einer Population ausbreitet. Zunächst werden gewöhnliche Differentialgleichungen verwendet, um grundlegende epidemiologische Modelle aufzustellen. Hierbei unterscheidet man sogenannte SIR und SIS Modelle, je nachdem ob die betrachtete Krankheit einem Individuum nach seiner Heilung Immunität verleiht oder nicht. Charakteristisch für Infektionskrankheiten sind Parameter wie die Infektionsrate oder die Heilungsrate. Sie geben an, wie ansteckend eine Krankheit ist bzw. wie schnell eine Person nach einer Erkrankung wieder gesund wird. Im Allgemeinen sind diese Parameter abhängig von bestimmten Bevölkerungsgruppen und verändern sich mit der Zeit. Daher werden am Ende des zweiten Kapitels Modelle entwickelt, die die Betrachtung mehrerer Bevölkerungsgruppen zulassen. Zeitvariante Parameter werden durch die Verwendung geschalteter Systeme berücksichtigt. Bei der Untersuchung solcher Systeme ist derjenige Zustand von besonderem Interesse, bei dem innerhalb der Bevölkerung keine Infizierten auftreten, die gesamte Bevölkerung also von der betrachteten Krankheit frei bleibt. Es stellt sich die Frage, unter welchen Bedingungen sich dieser Zustand nach einer Infizierung der Bevölkerung im Laufe der Zeit von selbst einstellt. Mathematisch gesehen untersucht man die triviale Ruhelage des Systems, bei der keine Infizierten existieren, auf Stabilität. Für die Stabilitätsanalyse sind einige mathematische Begriffe und Aussagen notwendig, die im zweiten Kapitel bereitgestellt werden. Grundlegend ist die Theorie gewöhnlicher Differentialgleichungen, einschließlich der Stabilitätstheorie von Lyapunov. Darüberhinaus kommen wichtige Erkenntnisse aus den Gebieten Konvexe und Nichtglatte Analysis, Positive Systeme und Differentialinklusionen. Ausgestattet mit diesen Hilfsmitteln werden im vierten Kapitel Sätze bewiesen, die hinreichende Bedingungen dafür angegeben, dass die triviale Ruhelage in geschalteten SIS, SIR und SIRS Systemen asymptotisch stabil ist. KW - epidemiology KW - switched systems KW - ordinary differential equations KW - stability analysis KW - Epidemiologie KW - Geschaltete Systeme KW - Gewöhnliche Differentialgleichungen KW - Stabilitätsanalyse KW - Gewöhnliche Differentialgleichung KW - Stabilität KW - Epidemiologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108573 ER - TY - THES A1 - Forster, Johannes T1 - Mathematical Modeling of Complex Fluids N2 - This thesis gives an overview over mathematical modeling of complex fluids with the discussion of underlying mechanical principles, the introduction of the energetic variational framework, and examples and applications. The purpose is to present a formal energetic variational treatment of energies corresponding to the models of physical phenomena and to derive PDEs for the complex fluid systems. The advantages of this approach over force-based modeling are, e.g., that for complex systems energy terms can be established in a relatively easy way, that force components within a system are not counted twice, and that this approach can naturally combine effects on different scales. We follow a lecture of Professor Dr. Chun Liu from Penn State University, USA, on complex fluids which he gave at the University of Wuerzburg during his Giovanni Prodi professorship in summer 2012. We elaborate on this lecture and consider also parts of his work and publications, and substantially extend the lecture by own calculations and arguments (for papers including an overview over the energetic variational treatment see [HKL10], [Liu11] and references therein). N2 - Die vorliegende Masterarbeit beschaeftigt sich mit der mathematischen Modellierung komplexer Fluessigkeiten. Nach einer Einfuehrung in das Thema der komplexen Fluessigkeiten werden grundlegende mechanische Prinzipien im zweiten Kapitel vorgestellt. Im Anschluss steht eine Einfuehrung in die Modellierung mit Hilfe von Energien und eines variationellen Ansatzes. Dieser wird im vierten Kapitel auf konkrete Beispiele komplexer Fluessigkeiten angewendet. Dabei werden zunaechst viskoelastische Materialien (z.B. Muskelmasse) angefuehrt und ein Modell fuer solche beschrieben, bei dem Eigenschaften von Festkoerpern und Fluessigkeiten miteinander kombiniert werden. Anschliessend untersuchen wir den Ursprung solcher Eigenschaften und die Auswirkungen von bestimmten Molekuelstrukturen auf das Verhalten der umgebenden Fluessigkeit. Dabei betrachten wir zunaechst ein Mehrskalen-Modell fuer Polymerfluessigkeiten und damit eine Kopplung mikroskopischer und makroskopischer Groessen. In einem dritten Beispiel beschaeftigen wir uns dann mit einem Model fuer nematische Fluessigkristalle, die in technischen Bereichen, wie beispielsweise der Displaytechnik, Anwendung finden. Geschlossen wird mit einem Ausblick auf weitere Anwendungsgebiete und mathematische Probleme. Wir folgen einer Vorlesung von Professor Dr. Chun Liu von der Penn State University, USA, die er im Sommer 2012 im Rahmen einer Giovanni-Prodi Gastprofessur an der Universitaet Wuerzburg ueber komplexe Fluessigkeiten gehalten hat. Bei der Ausarbeitung werden ebenfalls Teile seiner Veroeffentlichungen aufgegriffen und die Vorlesung durch eigene Rechnungen und Argumentationsschritte deutlich erweitert. KW - Variationsrechnung KW - Mathematische Modellierung KW - Kontinuumsmechanik KW - Inkompressibilität KW - Elastizität KW - Deformation KW - Festkörper KW - Flüssigkeit KW - Deformationsgradient KW - Newtonsches Kräftegleichgewicht KW - Komplexe Flüssigkeiten KW - Complex Fluids KW - Least Action Principle KW - Maximum Dissipation Principle KW - Modeling KW - Incompressibility Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83533 ER - TY - THES A1 - Englert, Stefan T1 - Schätzer des Artenreichtums bei speziellen Erscheinungshäufigkeiten T1 - Species richness estimation N2 - Bei vielen Fragestellungen, in denen sich eine Grundgesamtheit in verschiedene Klassen unterteilt, ist weniger die relative Klassengröße als vielmehr die Anzahl der Klassen von Bedeutung. So interessiert sich beispielsweise der Biologe dafür, wie viele Spezien einer Gattung es gibt, der Numismatiker dafür, wie viele Münzen oder Münzprägestätten es in einer Epoche gab, der Informatiker dafür, wie viele unterschiedlichen Einträge es in einer sehr großen Datenbank gibt, der Programmierer dafür, wie viele Fehler eine Software enthält oder der Germanist dafür, wie groß der Wortschatz eines Autors war oder ist. Dieser Artenreichtum ist die einfachste und intuitivste Art und Weise eine Population oder Grundgesamtheit zu charakterisieren. Jedoch kann nur in Kollektiven, in denen die Gesamtanzahl der Bestandteile bekannt und relativ klein ist, die Anzahl der verschiedenen Spezien durch Erfassung aller bestimmt werden. In allen anderen Fällen ist es notwendig die Spezienanzahl durch Schätzungen zu bestimmen. KW - Statistik KW - Nichtparametrische Statistik KW - Deskriptive Statistik Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71362 ER -