TY - THES A1 - Tian, Rui T1 - Structural and functional organization of synaptic proteins in Drosophila melanogaster T1 - Strukturelle und funktionelle Organisation von synaptischen Proteinen in Drosophila melanogaster N2 - Structural and functional modifications of synaptic connections (“synaptic plasticity”) are believed to mediate learning and memory processes. Thus, molecular mechanisms of how synapses assemble in both structural and functional terms are relevant for our understanding of neuronal development as well as the processes of learning and memory. Synapses form by an asymmetric association of highly specialized membrane domains: at the presynaptic active zone transmitter filled vesicles fuse, while transmitter receptors at the opposite postsynaptic density sense this signal. By genetic analysis, matrix proteins of active zones from various families have been shown to be important for fast vesicle fusion, and were suggested to contribute to synapse stability and assembly. The Sigrist lab in collaboration with the Buchner lab previously had shown that the large scaffold protein Bruchpilot (Brp) is essential for both the structural and functional integrity of active zones and for synaptic plasticity in Drosophila melanogaster. The work described in this thesis investigated several candidate proteins which appear to be involved in preand postsynaptic function, as summarized in the following: (1) DREP-2 (DEF45 related protein-2) had been found by co-immunoprecipitations with anti-Brp antibodies by Dr. Manuela Schmidt (unpublished data). Mutants and antibodies for the further study of DREP- 2 were generated in this thesis. Yeast two hybrid results suggest that DREP-2 might interact with dynein light chain 2, while in vivo imaging indicates that DREP-2 might be involved in bidirectional axonal transport. (2) Coimmunoprecipitation and pull down experiments suggested that the ARFGAP [ADP-ribosylation factor (ARF)-directed GTPase activating protein (GAP)] protein GIT (G-protein coupled receptor kinase interacting protein) could interact with the endocytosis associated molecule Stoned B (StnB). Mutants in the dgit gene showed an accumulation of large size vesicles, membrane intermediates and decreased vesicle density at the 3rd instar larval neuromuscular junction (NMJ) by electron microscopy (EM). The phenotypes accumulation of large size vesicles and membrane intermediates could be rescued partially by expression of Drosophila GIT (DGIT) or human GIT in dgit mutant background. Furthermore, by immunofluorescence the dgit mutant shows specifically decreased levels of StnB, which could be restored partially by the expression of DGIT. These results strongly support the suggestion that DGIT interacts with StnB, which is involved in the regulation of vesicle size, endocytosis or recycling of synaptic vesicles (SVs). Furthermore, the dgit mutants also showed signs of a mislocalization of the presynaptic protein Brp relative to the postsynaptic protein GluRIID, which could be rescued by expression of DGIT or human GIT in the dgit mutant background, but not by StnB. These results suggest that GIT on one hand executes roles in the regulation of synaptic vesicle endocytosis, but potentially also has structural roles for synapse assembly (3) Djm-1 is a candidate locus to mediate mental retardation in human patients when it is mutated. As a first step towards an understanding of the mechanistic role of DJM-1, Drosophila genetics were used to address DJM-1 function. So far, however, the djm-1 mutant generated in this thesis did not show a nervous system phenotype. N2 - Es wird angenommen, dass strukturelle und funktionale Änderungen an synaptischen Verbindungen („synaptische Plastizität”) die Grundlage für Lern- und Gedächtnisprozesse darstellen. Daher sind die molekularen Mechanismen des strukturellen und funktionalen Aufbaus von Synapsen wichtig für das Verständnis von neuronaler Entwicklung sowie von Lernund Gedächtnisprozessen. Synapsen werden durch eine asymmetrische Verbindung von zwei hochspezialisierten Membranen gebildet: An der präsynaptischen aktiven Zone fusionieren mit Transmittern gefüllte Vesikel, während Transmitterrezeptoren in der gegenüberliegenden postsynaptischen Dichte dieses Signal wahrnehmen. Durch genetische Analysen wurde gezeigt, dass Matrixproteine der aktiven Zone verschiedener Familien wichtig für die schnelle Vesikelfusion sind. Es wird angenommen, dass diese Proteine zu synaptischer Stabilität und dem Aufbau von Synapsen beitragen. Das Labor von Stephan Sigrist hat in einer Kollaboration mit dem Labor von Erich Buchner in der Vergangenheit gezeigt, dass das große Gerüstprotein Bruchpilot (Brp) essentiell für sowohl die strukturelle und funktionale Intaktheit von aktiven Zonen als auch für synaptische Plastizität in Drosophila melanogaster ist. Im Zuge dieser Doktorarbeit wurden mehrere Kandidatenproteine untersucht, die vermutlich eine Rolle in prä- und postsynaptischer Funktionen spielen, was folgendermaßen zusammengefasst werden kann: 1. DREP-2 (DFF45 related protein 2) wurde von Dr. Manuela Schmidt durch Koimmunpräzipitationen mit Anti-Brp Antikörpern gefunden (unveröffentlichte Daten). Mutanten und Antikörper für die weitere Untersuchung von DREP-2 wurden im Zuge dieser Doktorarbeit erzeugt. Die Ergebnisse aus Hefe-Zwei-Hybrid Versuchen legen nahe, dass DREP- 2 mit Dynein light chain 2 interagieren könnte, während in vivo Bildgebung darauf hindeutet, dass DREP-2 in bidirektionalen axonalen Transport involviert sein könnte. 2. Koimmunpräzipitations- und Pulldown-Experimente ließen den Schluss zu, dass das ARFGAP-Protein (ADP-ribosylation factor (ARF)-directed GTPase activating proteins (GAPs)) GIT (G-protein coupled receptor kinase interacting protein) mit dem mit Endozytose assoziierten Protein Stoned B (StnB) interagieren könnte. Elektronenmikroskopie der neuromuskulären Synapse von Larven im dritten Larvalstadium, die mutant für das dgit-Gen sind, zeigte eine Akkumulation von großen Vesikeln und Membran-Zwischenprodukten sowie eine verringerte Vesikeldichte. Zwei der Phänotypen, die Akkumulation großer Vesikel und der Membran-Zwischenprodukte, konnten durch die Expression von Drosophila GIT (DGIT) oder menschlichem GIT im dgit-mutanten Hintergrund teilweise ausgeglichen werden. Darüberhinaus wurde über Immunofluoreszenz deutlich, dass die dgit-Mutante eine spezifisch reduzierte Menge an StnB enthält, was durch die Expression von DGIT teilweise ausgeglichen werden konnte. Diese Ergebnisse unterstützen die Vorstellung sehr, dass DGIT mit StnB interagiert.. StnB spielt eine Rolle bei der Regulierung von Vesikelgrößen, Endozytose und der Wiederverwertung von synaptischen Vesikeln. Darüberhinaus zeigen dgit Mutanten Hinweise auf eine fehlerhafte Lokalisierung des präsynaptischen Proteins Brp relativ zu dem postsynaptischen Protein GluRIID, was furch die Expression von DGIT oder menschlichem GIT im dgit-mutanten Hintergrund ausgeglichen werden konnte, nicht jedoch durch StnB. Diese Ergebnisse legen den Schluss nahe, dass GIT einerseits eine Rolle bei der Regulierung der Endozytose synaptischer Vesikel spielt aber möglicherweise auch eine strukturelle Funktion beim Aufbau von Synapsen hat. 3. Djm-1 ist ein genetischer Lokus, der geistige Behinderung bei menschlichen Patienten hervorruft, wenn er mutiert vorliegt. Als ersten Schritt in Richtung eines Verständnisses der mechanistischen Rolle von DJM-1, wurde Genetik in Drosophila durchgeführt, um die Funktion von DJM-1 zu untersuchen. Die in dieser Doktorarbeit erzeugte djm-1 Mutante zeigte jedoch bisher keinen anomalen Phänotyp im Nervensystem. KW - Taufliege KW - Synaptische Transmission KW - Proteine KW - synaptisches Protein KW - Drosophila melanogaster KW - Drosophila melanogaster KW - synaptic proteins Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57399 ER - TY - THES A1 - Stark, Felix T1 - Funktionelle Untersuchungen zur Regulation der Protein Kinase CK2 durch Polyamine in Drosophila melanogaster und deren physiologische Bedeutung T1 - Functional analysis of the regulation of the protein kinase CK2 by polyamines in Drosophila melanogaster and its psyiological meaning N2 - Die heterotetramere Proteinkinase CK2 nimmt aufgrund der großen Anzahl und Diversität ihrer Substrate, sowie aufgrund ihrer Eigenschaft Signalwege miteinander zu vernetzen eine Sonderstellung innerhalb der Kinasen ein. CK2 beeinflusst Proliferation, Differenzierung und Apoptose, Prozesse an denen auch Polyamine und der MAPK-Signalweg beteiligt sind. Eine vor kurzem durchgeführte Arbeit beschreibt die Bindung von CK2 an das Gerüstprotein KSR und die Verstärkung des MAPK-Signalwegs durch Phosphorylierung von Raf-Proteinen in Vertebraten. In dieser Arbeit konnte gezeigt werden, dass CK2 auch in Drosophila mit KSR interagiert und das einzige in Drosophila vorhandene Raf-Potein (DRaf) in vitro phosphoryliert. Im Gegensatz zur Phosphorylierung der humanen B-Raf und C-Raf Proteine an Serin 446 bzw. Serin 338 innerhalb der „negative charge regulatory region“ (N-Region), führten Kinasereaktionen und Massenspektrometrische Untersuchungen zur Identifizierung von Serin 11 als CK2 Phosphorylierungsstelle in DRaf, während ein zu Serin 446 in B-Raf äquivalentes Serin in der N-Region in Drosophila nicht durch CK2 phosphoryliert wird. Durch Überexpression von DRaf sowie von zwei DRaf-Varianten bei denen Serin 11 durch Alanin oder Aspartat substituiert wurde (DRafS11A und DRafS11D) konnte in Zellkulturexperimenten gezeigt werden, dass die Ladung an der Aminosäureposition 11 die Funktion von DRaf beeinflusst, wobei eine negative Ladung an dieser Stelle zur Phosphorylierung und Aktivierung der Effektorkinase Erk führt. Die Phosphorylierung durch CK2 ist unabhängig von regulatorischen Botenstoffen ("second messengers"), wird aber durch Bindung von Polyaminen moduliert. Intrazelluläre Polyamine entstammen zum grossen Teil dem zellulären Aminosäurekatabolismus und beeinflussen die Phosphorylierung von DRaf durch CK2 in vitro, wobei Spermin ein effizienter Inhibitor der Reaktion ist, während die Effekte von Putrescin und Spermidin gering sind. Auch in Drosophila Schneider S2 Zellen und in adulten weiblichen Fliegen hat Spermin einen inhibitorischen, CK2-abhängigen Effekt auf die Aktivierung von Erk. Ausserdem konnte gezeigt werden, dass Putrescin und Spermidin in der Lage sind die Aktivierung von Erk, im Vergleich zu Zellen die nur mit Spermin behandelt wurden, zu erhöhen. Das spricht dafür, dass die Phosphorylierung von DRaf und die davon abhängige Aktivierung von Erk durch CK2 von der Menge und Relation der verschiedenen Polyamine zueinander abhängt. Die Ergebnisse dieser Arbeit lassen den Schluss zu, dass der Polyaminmetabolismus über CK2 mit dem MAPK-Signalweg verknüpft ist. Nachdem Polyamine durch Aminosäurekatabolismus enstehen, kann auf diese Weise der MAPK-Signalweg in Abhängigkeit der Verfügbarkeit zellulärer Aminosäuren reguliert werden. Vorversuche zeigten eine Beeinflussung von Proliferation und Apoptose durch CK2 und Polyamine. Weitere Untersuchungen sind aber nötig um spezifische Einflüsse von Polyaminen und CK2 auf zelluläre Prozesse wie Proliferation, Differenzierung und Apoptose aufzudecken. N2 - Because of its high number and diversity of substrates, as well as its ability to cross-link signalling pathways, the heterotetrameric protein kinase CK2 has an exceptional position within kinases. CK2 influences proliferation, differentiation and apoptosis, processes in which also polyamines and the MAPK-signalling pathway are involved. A recent publication delineates binding of CK2 to the scaffold protein KSR and the enhancement of the MAPK-signalling pathway by phosphorylation of Raf-proteins in vertebrates. In my thesis I could show that CK2 also interacts with KSR in Drosophila and phosphorylates the only existing Raf protein in Drosophila (DRaf) in vitro. In contrast to the phosphorylation of human B-Raf- and C-Raf-proteins on serine 446 respectively serine 338 within the "negative charge regulatory region" (N-region), kinase reactions and mass spectrometric analyses led to the identification of serine 11 as phosphorylation site in DRaf, whereas a serine in the N-region, which corresponds to serine 446 of B-Raf, is not phosphorylated by CK2 in Drosophila. In cell culture experiments overexpression of DRaf and two DRaf-variants, in which serine 11 was substituted by alanine or aspartate (DRafS11A and DRafS11D), revealed the charge at amino acid position 11 to affect the function of DRaf, with a negative charge leading to phosphorylation and activation of the effector kinase Erk. Phosphorylation by CK2 is independent of second messengers, whereas it is modified by binding of polyamines. Intracellular polyamines mainly derive from cellular amino acid catabolism and modulate the phosphorylation of DRaf by CK2 in vitro with spermine being an efficient inhibitor of the reaction, whereas the effects of putrescine and spermidine are minor. In Drosophila Schneider S2 cells and adult flies spermine inhibits the activation of Erk in a CK2-dependent way. Furthermore administration of putrescine and spermidine in combination with spermine leads to enhanced Erk activation in cells compared to cells that are treated with spermine. These results suggest that phosphorylation of DRaf and the subsequent activation of Erk by CK2 are dependent on the amount and relative concentrations of polyamines. Altogether the results of this work demonstrate a role for CK2 in linking polyamine metabolism to the MAPK-signalling pathway. Since polyamines derive from amino acid catabolism, the MAPK-signalling pathway can be regulated dependent on the availability of cellular amino acids. Preliminary experiments point to CK2- and polyamine-dependent effects on proliferation and apoptosis. Further investigations are necessary to reveal specific effects of polyamines and CK2 on cellular processes like proliferation, differentiation and apoptosis. KW - Protein Kinase CK2 KW - Polyamine KW - MAP-Kinase KW - Signaltransduktion KW - Taufliege KW - Raf KW - MAPK-Signalweg KW - Drosophila melanogaster KW - DRaf KW - protein kinase CK2 KW - polyamines KW - MAPK signalling pathway KW - Drosophila melanogaster KW - DRaf Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57522 ER - TY - THES A1 - Solanki, Narendra T1 - Novelty choice in Drosophila melanogaster T1 - Neuigkeitseffekt im Mustersehen von Drosophila melanogaster N2 - This study explores novelty choice, a behavioral paradigm for the investigation of visual pattern recognition and learning of the fly Drosophila melanogaster in the flight simulator. Pattern recognition in novelty choice differs significantly from pattern recognition studied by heat conditioning, although both paradigms use the same test. Out of the four pattern parameters that the flies can learn in heat conditioning, novelty choice can be shown for height (horizontal bars differing in height), size and vertical compactness but not for oblique bars oriented at +/- 45°. Upright and inverted Ts [differing in their centers of gravity (CsOG) by 13°] that have been extensively used for heat conditioning experiments, do not elicit novelty choice. In contrast, horizontal bars differing in their CsOG by 13° do elicit novelty choice; so do the Ts after increasing their CsOG difference from 13° to 23°. This indicates that in the Ts the heights of the CsOG are not the only pattern parameters that matter for the novelty choice behavior. The novelty choice and heat conditioning paradigms are further differentiated using the gene rutabaga (rut) coding for a type 1 adenylyl cyclase. This protein had been shown to be involved in memory formation in the heat conditioning paradigm. Novelty choice is not affected by mutations in the rut gene. This is in line with the finding that dopamine, which in olfactory learning is known to regulate Rutabaga via the dopamine receptor Dumb in the mushroom bodies, is dispensable for novelty choice. It is concluded that in novelty choice the Rut cAMP pathway is not involved. Novelty choice requires short term working memory, as has been described in spatial orientation during locomotion. The protein S6KII that has been shown to be involved in visual orientation memory in walking flies is found here to be also required for novelty choice. As in heat conditioning the central complex plays a major role in novelty choice. The S6KII mutant phenotype for height can be rescued in some subsets of the ring neurons of the ellipsoid body. In addition the finding that the ellipsoid body mutants ebo678 and eboKS263 also show a mutant phenotype for height confirm the importance of ellipsoid body for height novelty choice. Interestingly some neurons in the F1 layer of the fan-shaped body are necessary for height novelty choice. Furthermore, different novelty choice phenotypes for different pattern parameters are found with and without mushroom bodies. Mushroom bodies are required in novelty choice for size but they are dispensable for height and vertical compactness. This special circuit requirement for the size parameter in novelty choice is found using various means of interference with mushroom body function during development or adulthood. N2 - Diese Studie untersucht Novelty Choice, ein Verhaltens-Paradigma für die Untersuchung der visuellen Mustererkennung und des Lernens der Fliege Drosophila melanogaster im Flugsimulator. Mustererkennung in Novelty Choice unterscheidet sich deutlich von Mustererkennung durch heat conditioning, obwohl beide Paradigmen den gleichen Test verwenden. Von den vier Muster-Parametern, die die Fliegen im heat conditioning für die Musterunterscheidung lernen kann, lernt sie in Novelty Choice nur die Höhe (horizontale Balken in unterschiedlicher Höhe), Größe und vertikale Kompaktheit, nicht dagegen die schrägen Balken im Winkel von +/- 45°. Aufrechte und umgekehrte Ts [hinsichtlich ihrer Schwerpunkte (CsOG) um 13° voneinander verschieden], die bisher weitgehend für heat conditioning Experimente verwendet werden, lösen kein Novelty Choice aus. Im Gegensatz dazu reagiert die Fliege auf horizontale Balken, die sich in ihren CsOG um 13° unterscheiden, mit Novelty Choice. Auch die Ts lösen Novelty Choice aus, wenn ihre CsOG-Differenzen von 13° auf 23° erhöht wird. Dies deutet darauf hin, dass in den Ts die Höhen der CsOG nicht die einzigen relevanten Musterparameter für Novelty Choice Verhalten sind. Die Novelty Choice und heat conditioning Paradigmen unterscheiden sich darüber hinaus in der Rolle des Gens rutabaga (rut), das eine Typ-1-Adenylylcyclase codiert. Für dieses Protein wurde gezeigt, dass es bei der Gedächtnisbildung in der heat conditioning beteiligt ist. Novelty Choice wird nicht durch Mutationen im Gen rut beeinflusst. Dies steht im Einklang mit der Erkenntnis, dass Dopamin, das bei olfaktorischem Lernen bekanntermaßen Rutabaga über den Dopamin-Rezeptor Dumb in den Pilzkörpern reguliert, entbehrlich für die Novelty Choice ist. Die Schlussfolgerung ist, dass der Rut cAMP Signalweg bei der Novelty Choice nicht beteiligt ist. Novelty choice erfordert kurzfristigen Arbeitsgedächtnisspeicher, wie in der räumlichen Orientierung während der Fortbewegung beschrieben wurde. Das Protein S6KII, für welches gezeigt wurde, dass es am visuellen Orientierungsgedächtnis laufender Fliegen beteiligt ist, wird hier als ebenso notwendig für Novelty Choice entdeckt. Wie in heat conditioning spielt der Zentralkomplex eine wichtige Rolle in Novelty Choice. Der S6KII Mutantenphänotyp für Höhe kann in einigen Untergruppen der Ring-Neuronen des Ellipsoidkörpers gerettet werden. Weiterhin kann festgestellt werden, dass die Ellipsoidkörper-Mutanten ebo678 und eboKS263, welche ebenfalls einen Mutantenphänotyp für Höhe zeigen, die Bedeutung des Ellipsoidkörpers für die Novelty Choice hinsichtlich des Höheparameters bestätigen. Interessanterweise sind einige Neuronen in der F1-Schicht des Fächerförmigen Körpers notwendig für Novelty Choice (für Höhe). Darüber hinaus werden mit und ohne Pilzkörper unterschiedliche Phänotypen für verschiedene Musterparameter bei Novelty Choice gefunden. Die Pilzkörper sind in der Novelty Choice für Größe erforderlich, aber für Höhe und vertikale Kompaktheit sind sie entbehrlich. Diese spezielle Schaltungsvoraussetzung für den Größenparameter in Novelty Choice wird unter Verwendung verschiedener Mittel der Interferenz mit Pilzkörperfunktionen während der Entwicklung oder im Erwachsenenalter gefunden. KW - Taufliege KW - Drosophila melanogaster KW - Mustererkennung KW - Sehen KW - Lernen Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103219 N1 - Dieses Dokument wurde aus Datenschutzgründen - ohne inhaltliche Änderungen - erneut veröffentlicht. Die ursprüngliche Veröffentlichung war am: 06.08.2013 ER - TY - THES A1 - Schubert, Frank Klaus T1 - The circadian clock network of \(Drosophila\) \(melanogaster\) T1 - Das Uhrneuronennetzwerk von \(Drosophila\) \(melanogaster\) N2 - All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the “ticking clock“ over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells. N2 - Alle lebenden Organismen benötigen Mechanismen zur Zeitmessung, um sich auf periodisch wiederkehrende Umweltveränderungen einstellen zu können. Zirkadiane Uhren verleihen die Fähigkeit, tages- und jahreszeitliche Veränderungen vorauszuahnen und sich an diese anzupassen. Die Eigenschaften des zirkadianen Systems, als auch dessen molekularer Mechanismus scheinen über sämtliche Taxa konserviert zu sein. Daher bietet es sich an, die leicht handhabbare Taufliege Drosophila melanogaster als Modellorganismus zu benutzen. Das relativ kleine Gehirn (ca. 135.000 Neurone) und die herausragende genetische Zugänglichkeit der Fliege prädestinieren sie dazu, das zirkadiane System in einem komplexen, aber dennoch überschaubaren Kontext zu untersuchen. Die vergangenen 50 Jahre chronobiologischer Forschung an Drosophila führten zu einem tiefgreifenden Verständnis der molekularen Mechanismen, die für tageszeitliche Rhythmizität verantwortlich sind. Anhand zahlreicher histologischer Untersuchungen wurde die neuronale Grundlage, das Uhrneuronennetzwerk im zentralen Nervensystem, beschrieben. Nichtsdestotrotz, gibt es noch immer keine detaillierte neuroanatomische und physiologische Charakterisierung der Uhrneurone auf Einzelzellebene. Daher war das Ziel der vorliegenden Arbeit die umfangreiche Beschreibung der Einzelzellanatomie ausgewählter Uhrneurone sowie die Identifikation mutmaßlicher post- und präsynaptischer Verzweigungen. Darüber hinaus war es mir möglich, eine Methode zur Messung von Biolumineszenzrhythmen in explantierten lebenden Gehirnen zu etablieren. Mit einem Lumineszenzmikroskop können die Proteinoszillationen einzelner Uhrneurone über die Dauer mehrerer zirkadianer Zyklen aufgezeichnet werden, wodurch neue funktionale Studien ermöglicht werden. KW - Taufliege KW - Chronobiologie KW - Tagesrhythmus KW - Neuroanatomie KW - Drosophila melanogaster KW - circadian rhythms KW - single cell anatomy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157136 ER - TY - THES A1 - Schubert, Alice T1 - Immunhistochemische und funktionelle Charakterisierung der Serin/Arginin-Proteinkinase SRPK79D mit Identifizierung von Interaktionspartnern in Drosophila melanogaster T1 - Immunohistochemical and functional characterisation of the serine/arginine protein kinase SRPK79D with identification of interaction partners in Drosophila melanogaster N2 - Auf der Suche nach Mutanten mit einer vom Wildtyp abweichenden Verteilung des Aktive Zone-Proteins Bruchpilot wurde die Serin/Arginin-Proteinkinase SRPK79D identifiziert. Hier zeigte sich, dass die Mutation im Srpk79D-Gen zu einer Agglomeration von Bruchpilot in den larvalen segmentalen und intersegmentalen Nerven führt. In der vorliegenden Arbeit sollte die SRPK79D genauer charakterisiert werden. Nach Präadsorptionen und Affinitätsreinigungen von in einer früheren Arbeit erzeugten Antiseren, gelang es die Lokalisation der überexprimierten SRPK79D-GFP-Isoformen zu bestimmen. Dabei zeigte sich, dass keines der Antiseren die endogene Kinase im Western Blot oder immunhistocheimisch detektieren konnte. Dies legt den Schluss nahe, dass die Expression der SRPK79D in einer geringen Konzentration erfolgt. Es war jedoch möglich die endogene SRPK79D-PC-Isoform mittels einer Immunpräzipitation soweit anzureichern, dass sie im Western Blot nachweisbar war. Für die SRPK79D-PB-Isoform gelang dies allerdings nicht. Anhand von larvalen Nerv-Muskel-Präparaten konnte gezeigt werden, dass die panneural überexprimierte SRPK79D-PC-GFP-Isoform an die Aktiven Zone transportiert wird und dort mit Bruchpilot, sowie den Interaktionspartnern von Bruchpilot Liprin-α und Rab3 kolokalisiert. Außerdem liegt sie diffus im Zytoplasma von neuronalen Zellkörpern vor. In adulten Gehirnen lokalisiert die transgen überexprimierte SRPK79D-PC-GFP im Fanshaped body, Ringkomplex und in neuronalen Zellkörpern. Die panneural überexprimierte SRPK79D-PB-GFP-Isoform liegt im larvalen und adulten Gehirn lokal im Zytoplasma der Perikaryen akkumuliert vor und wird nicht an die Aktive Zone transportiert. Das PB-Antiserum erkennt im adulten Gehirn neuronale Zellkörper und das Neuropil in der Calyxregion der Pilzkörper. Immunhistochemische Färbungen von larvalen Nerv-Muskel-Präparaten mit verschiedenen Antikörpern gegen neuronale Proteine belegen, dass die Agglomerate in der Srpk79D-Mutante für Bruchpilot spezifisch sind. Es konnten bisher keine weiteren Komponenten der Agglomerate detektiert werden. Auch ein genereller axonaler Defekt konnte durch Färbungen gegen CSP, Synaptotagmin und Experimenten mit dem Mitochondrienfarbstoff MitoTracker® FM Green ausgeschlossen werden. Die quantitative Auswertung der Präparate zeigte, dass die Morphologie der synaptischen Boutons und die Zahl der Aktiven Zonen durch die Mutation im Srpk79D-Gen nicht beeinflusst werden. Um gesicherte Kenntnis darüber zu erlangen, ob die Mutation im Srpk79D-Gen die beobachteten Phänotypen verursacht, wurden Rettungsexperimente durchgeführt. Es konnte sowohl für das hypomorphe Srpk79DP1-Allel, als auch für die Nullmutante Srpk79DVN eine nahezu vollständige Rettung des Agglomerat-Phänotyps mit der panneural exprimierten SRPK79D-PF- oder der SRPK79D-PB-Isoform erreicht werden. Aus diesen Ergebnissen folgt, dass beide Isoformen der SRPK79D in der Lage sind den Bruchpilot-Agglomerat-Phänotyp zu retten, die Rettung der Verhaltensdefizite jedoch alle Isoformgruppen benötigen. Um zu untersuchen, ob der Agglomerations-Phänotyp der Srpk79D-Mutanten auf einer Überexpression des Bruchpilotgens oder auf Fehlspleißen seiner prä-mRNA beruht, wurden Immunpräzipitationen, semiquantitative RT-PCRs und Real Time-PCRs durchgeführt. Ausgehend von den Ergebnissen kann eine mögliche Überexpression bzw. Spleißdefekte von Bruchpilot weitgehend ausgeschlossen werden. Die simultane Überexpression von SRPK79D und Bruchpilot konnte den Phänotyp der Bruchpilot-Überexpression nicht retten. Anhand der stimulated emission depletion-Mikroskopie konnte gezeigt werden, dass die gebildeten Agglomerate das charakteristische Donut-förmige Muster der T-bars zeigen und wahrscheinlich als fusionierte Ketten von T-bars in den larvalen Nerven vorliegen. Beim in vivo Imaging Versuch konnte demonstriert werden, dass das verkürzte Bruchpilot-D3-Strawberry in die Bruchpilot-Agglomerate der Srpk79D-Nullmutante eingebaut wird und dass größere Agglomerate unbewegt im Nerv verharren. Der anterograde und retrograde Transport kleinerer Agglomerate konnte verzeichnet werden. Bei CytoTrap-Yeast-two-hybrid-Experimenten konnten für die SRPK79D-PB Isoform vier potentielle Interaktionspartner identifiziert werden: das Hitzeschockprotein Hsp70Bbb, die mitochondriale NADH-Dehydrogenase mt:ND5, das large ribosomal RNA Gen in Mitochondrien und das am Spleißen beteiligte Protein 1.3CC/Caper. Die Sequenzierung zeigte, dass nur das letzte Exon von Caper im pMyr-Vektor vorliegt. Der für die PC-Isoform durchgeführte CytoTrap-Versuch ergab nur Temperatur-Revertanten. SR-Proteinkinasen phosphorylieren die RS-Domäne von SR-Proteinen und sind dadurch an der Regulation des konstitutiven und alternativen Spleißens beteiligt. Somit stellen die acht identifizierten SR-Proteine in Drosophila potentielle Interaktionspartner der SRPK79D dar. Die durch RNAi-vermittelte Reduktion von sieben SR-Proteinen führte zu keiner Agglomeration von Bruchpilot. Jedoch führte die RNAi-vermittelte Reduktion des SR-Proteins Spleißfaktor 2 (SF2) zu kleineren Bruchpilot-Agglomeraten in den axonalen Nerven. SF2 ist selbst kein Bestandteil der Agglomerate der Srpk79D-Nullmutante. Die Überexpression von SF2 führt wahrscheinlich zu einem axonalen Transportdefekt, wie die Färbung gegen das Cysteine string protein zeigte. Weiterhin führt die Überexpression zu einer Akkumulation von SF2 in larvalen Axonen und im adulten Gehirn der Fliegen. SF2 ist nicht nur in Zellkernen sämtlicher Zellen nachweisbar, sondern es konnte auch ein spezifisches Signal im subsynaptischen Retikulum der Postsynapse detektiert werden, wie die Färbungen gegen Disc large bestätigten. N2 - In a Screen for mutations which affect the distribution of the active zone protein Bruchpilot, the serine/arginine protein kinase 79D (SRPK79D) was identified. A mutation in the Srpk79D gene leads to conspicuous agglomeration of Bruchpilot in the larval segmental and intersegmental nerves. The aim of this thesis was to characterize the function of SRPK79D and to identify its interaction partners. The isoform specific antisera which were generated in an earlier PhD thesis recognized only the pan-neuraly overexpressed GFP-tagged SRPK79D isoforms in Western blots and immunhistochemical stainings. After preabsorption and affinity purification the antisera could uncover the localization of the overexpressed SRPK79D-GFP. Without enrichment of the endogenous SRPK79D concentration seems to be too low to be detected with the antisera. However, the endogenous SRPK79D-PC isoform could be detected in a Western blot after immunoprecipitation, but not the SRPK79D-PB isoform. The panneural overexpressed SRPK79D-PC-GFP isoform co-localizes with Bruchpilot as well as with the Bruchpilot interaction partners Liprin-α and Rab3 at active zones and showed a diffuse pattern in the cytoplasm of neuronal cell bodies. In adult brains the panneural overexpressed SRPK79D-PC isoform is detectable in the fanshaped body, ring complex and neuronal cell bodies. The panneural overexpressed SRPK79D-PB isoform is not present at the active zone but is detectable in larval and adult CNS accumulating in discrete spots in the cytoplasm of neuronal cells. The panneural overexpressed SRPK79D-PB isoform is also present in the neuronal cell bodies and calyces of the mushroom body. Larval dissections followed by stainings with different antibodies against synaptic proteins showed that the agglomerates in the Srpk79D mutants are quite specific for Bruchpilot. No other components of the agglomerates could be revealed until now. General impairments of axonal transport could be excluded by stainings against cysteine string protein (CSP), Synaptotagmin, and experiments with the dye MitoTracker® Green FM. These synaptic proteins are uniformly distributed along the larval nerves. The quantification of boutons revealed that the basic synaptic structure is not altered in Srpk79D-mutants. Stainings on frozen head sections of null mutant Srpk79D revealed a spot like Bruchpilot accumulation in the antennal nerves. The mutation of Srpk79D causes behavioral deficits in adult flies as well as a shortened life span. In order to test if expression of either isoform (SRPK79D-PC/PF or –PB) is able to rescue the obtained phenotypes, rescue experiments were performed. A nearly complete rescue of the agglomerate phenotype was achieved with both SRPK79D isoforms. Rescue experiments for the observed behavioral phenotype in the null mutant background did not significant by improve the defect, neither when using the pannreural driver lines elav-GAL4 nor the newly generated nSyb-GAL4. Alkaline Phosphatase treatment followed by 1D- or 2D-gelelecrophoresis could not detect a possible phosphorylation of SRPK79D. Also the vesicle-associated protein Synapsin showed a normal isoform pattern which indicates that Synapsin is not a substrate for SRPK79D. In experiments to detect overexpression or splicing defects of the active zone protein Bruchpilot as possible cause for the agglomeration phenotype in mutant Srpk79D animals, immunoprecipitations, semiquantitative RT-PCRs and Real Time-PCRs were performed. The results showed that overexpression or splicing deficits could be largely excluded. In stainings with the new Bruchpilot antisera N-Term and D2 the staining pattern did not differ from the nc82 staining showing that the PF isoform of Bruchpilot is not forming separate agglomerates in Srpk79DVN mutants. The overexpression of D2-4 and D1-3, truncated Bruchpilot proteins without either the N- or C-terminus, respectively, showed an agglomeration of the corresponding proteins in larval and adult CNS. However the overexpression of D1-3 is not affecting the endogenous Bruchpilot distribution. The simultaneous overexpression of SRPK79D and Bruchpilot could not rescue the phenotype caused by Bruchpilot overexpression. With the stimulated emission depletion microscope the pattern of the Bruchpilot agglomerates in the Srpk79DVN mutant revealed electron-dense donut-shaped structures in larval nerves, presumably fused T-bars. With in vivo imaging experiments anterograde as well as retrograde movement of D3-labeled agglomerates in the Srpk79DVN mutant was observed whereas large agglomerates are immobile. To identify substrates or interaction partners of SRPK79D the Yeast-two-hybrid screen CytoTrap was performed. The CytoTrap screen for the SRPK79D-PB isoform identified four interaction partners: the heat shock protein Hsp70Bbb, the mitochondrial NADH-Dehydrogenase mt:ND5, the large ribosomal RNA gene in mitochondria and 1.3CC/Caper. Caper is involved in splicing via the spliceosome. Sequencing revealed that the pMyr vector includes only the last exon of Caper. The performed CytoTrap for the RC-Isoform detected only temperature revertants. The RNAi mediated knock down of each of the eight known SR proteins in Drosophila showed that seven of them do not produce a phenotype whereas the reduction of SF2 leads to Bruchpilot agglomerates in larval nerves. The SR-Protein SF2 is not included in the agglomerates of the Srpk79D mutant but showed expression in nuclei of all cell types. The overexpression of SF2 leads to an agglomeration of SF2 in the larval nerves probably due to an impairment of general axonal transport. SF2 is not only a nuclear protein; it is also associated with post synaptic structures. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - RNS-Spleißen KW - Genmutation KW - Drosophila melanogaster KW - SRPK79D KW - Serin-Arginin Proteinkinase KW - Spleißen KW - Bruchpilot KW - Drosophila melanogaster KW - SRPK79D KW - serine-arginine protein kinase KW - splicing KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53841 ER - TY - THES A1 - Sareen, Preeti T1 - Visual attention in Drosophila melanogaster T1 - Visuelle Aufmerksamkeit bei Drosophila melanogaster N2 - There is such vast amount of visual information in our surroundings at any time that filtering out the important information for further processing is a basic requirement for any visual system. This is accomplished by deploying attention to focus on one source of sensory inputs to the exclusion of others (Luck and Mangun 2009). Attention has been studied extensively in humans and non human primates (NHPs). In Drosophila, visual attention was first demonstrated in 1980 (Wolf and Heisenberg 1980) but this field remained largely unexplored until recently. Lately, however, studies have emerged that hypothesize the role of attention in several behaviors but do not specify the characteristic properties of attention. So, the aim of this research was to characterize the phenomenon of visual attention in wild-type Drosophila, including both externally cued and covert attention using tethered flight at a torque meter. Development of systematic quantifiable behavioral tests was a key aspect for this which was not only important for analyzing the behavior of a population of wild-type flies but also for comparing the wild-type flies with mutant flies. The latter would help understand the molecular, genetic, and neuronal bases of attention. Since Drosophila provides handy genetic tools, a model of attention in Drosophila will serve to the greater questions about the neuronal circuitry and mechanisms involved which might be analogous to those in primates. Such a model might later be used in research involving disorders of attention. Attention can be guided to a certain location in the visual field by the use of external cues. Here, using visual cues the attention of the fly was directed to one or the other of the two visual half-fields. A simple yet robust paradigm was designed with which the results were easily quantifiable. This paradigm helped discover several interesting properties of the cued attention, the most substantial one being that this kind of external guidance of attention is restricted to the lower part of the fly’s visual field. The guiding cue had an after-effect, i.e. it could occur at least up to 2 seconds before the test and still bias it. The cue could also be spatially separated from the test by at least 20° and yet attract the attention although the extent of the focus of attention (FoA) was smaller than one lower visual half-field. These observations excluded the possibility of any kind of interference between the test and the cue stimuli. Another interesting observation was the essentiality of continuous visibility of the test stimulus but not the cue for effective cuing. When the contrast of the visual scene was inverted, differences in response frequencies and cuing effects were observed. Syndirectional yaw torque responses became more frequent than the antidirectional responses and cuing was no longer effective in the lower visual field with inverted contrast. Interestingly, the test stimulus with simultaneous displacement of two stripes not only effectuated a phasic yaw torque response but also a landing response. A 50 landing response was produced in more than half of the cases whenever a yaw torque response was produced. Elucidation of the neuronal correlates of the cued attention was commenced. Pilot experiments with hydroxyurea (HU) treated flies showed that mushroom bodies were not required for the kind of guidance of attention tested in this study. Dopamine mutants were also tested for the guidance of attention in the lower visual field. Surprisingly, TH-Gal4/UAS-shits1 flies flew like wild-type flies and also showed normal optomotor response during the initial calibration phase of the experiment but did not show any phasic yaw torque or landing response at 18 °C, 25 °C or 30 °C. dumb2 flies that have almost no D1 dopamine receptor dDA1 expression in the mushroom bodies and the central complex (Kim et al. 2007) were also tested and like THGal4/ UAS-shits1 flies did not show any phasic yaw torque or landing response. Since the dopamine mutants did not show the basic yaw torque response for the test the role of dopamine in attention could not be deduced. A different paradigm would be needed to test these mutants. Not only can attention be guided through external cues, it can also be shifted endogenously (covert attention). Experiments with the windows having oscillating stripes nicely demonstrated the phenomenon of covert attention due to the production of a characteristic yaw torque pattern by the flies. However, the results were not easily quantifiable and reproducible thereby calling for a more systematic approach. Experiments with simultaneous opposing displacements of two stripes provide a promising avenue as the results from these experiments showed that the flies had a higher tendency to deliver one type of response than when the responses would be produced stochastically suggesting that attention increased this tendency. Further experiments and analysis of such experiments could shed more light on the mechanisms of covert attention in flies. N2 - Zu jedem Zeitpunkt stellt unsere Umgebung eine so große Menge an visueller Information zur Verfügung, dass das Herausfiltern der wichtigen Informationen für eine weitere Verarbeitung eine grundlegende Herausforderung für jedes komplexe visuelle System darstellt. Bewerkstelligt wird dies u.a. mittels der selektiven Aufmerksamkeit, die die sensorischen Inputs einer Quelle, unter Ausschluss aller anderen, hervorhebt (Luck und Mangun 2009). Aufmerksamkeit wurde an Menschen und nichtmenschlichen Primaten bereits ausgiebig untersucht. Visuelle Aufmerksamkeit bei Drosophila konnte 1980 zum ersten Mal nachgewiesen werden (Wolf und Heisenberg 1980), jedoch blieb dieses Feld bis heute großen Teils unerforscht. In jüngster Zeit tauchten Studien auf, die der Aufmerksamkeit eine Rolle bei verschiedenen Verhaltensleistungen zuweisen, ohne jedoch die charakteristischen Eigenschaften von Aufmerksamkeit zu spezifizieren. Es ist das Ziel dieser Arbeit, das Phänomen der sowohl durch externe Reize ausgelösten, als auch endogen erzeugten (covert attention) visuellen Aufmerksamkeit bei wildtypischen Drosophila im stationären Flug am Drehmoment-Messgerät zu charakterisieren. Hierbei ist ein wesentlicher Aspekt durch die Entwicklung von quantitativen Tests das Verhalten von wildtypischen Fliegen so zu analysieren, dass es mit dem Verhalten genetischer Varianten verglichen werden kann. Ein solcher Vergleich würde helfen, die molekularen, genetischen und neuronalen Grundlagen der Aufmerksamkeit zu verstehen, da bei Drosophila für solche Untersuchungen einfach anwendbare genetische Werkzeuge zur Verfügung stehen. Ein Modell der Aufmerksamkeit bei Drosophila könnte auch für die visuelle Aufmerksamkeit bei Primaten relevant sein, falls diese Systeme homolog sind, d.h. in der Stammesgeschichte einen gemeinsamen Ursprung haben. Mittels äußerer Reize lässt sich die Aufmerksamkeit auf einen bestimmten Ort im visuellen Feld führen. In dieser Arbeit wird die Aufmerksamkeit einer Fliege durch visuelle Reize auf jeweils eines der beiden visuellen Halbfelder gelenkt. Es wird ein einfaches und robustes Paradigma entwickelt, dessen Ergebnisse ohne viel Aufwand quantifizierbar sind. Eine wesentliche Eigenschaft der exogen gelenkten visuellen Aufmerksamkeit, zu deren Entdeckung dieses Paradigma unter anderen beigetragen hat, ist, dass diese Art der Lenkung der Aufmerksamkeit auf den unteren Teil des visuellen Feldes der Fliege beschränkt ist. Der lenkende Reiz hat einen Nacheffekt, das heißt, er kann bis zu zwei Sekunden vor dem Test auftreten und dessen Ergebnis trotzdem beeinflussen. Auch bei einer räumlichen Trennung des Reizes vom Test um mindestens 20° kann er noch die Aufmerksamkeit auf diesen ziehen, wobei hier dann die Ausdehnung des Aufmerksamkeitsfeldes kleiner als ein unteres visuelles Halbfeld 52 ist. Durch diese Beobachtungen wird eine mögliche Interferenz zwischen Reiz und Test ausgeschlossen. Eine weitere interessante Beobachtung ist, dass für ein effektives Lenken der Aufmerksamkeit der Teststimulus aber nicht der lenkende Reiz durchgehend sichtbar sein muss. Eine Invertierung des Kontrastes der visuellen Reizgebung führt zu veränderten Antwortfrequenzen und Effekten der Aufmerksamkeitslenkung. So treten syndirektionale Drehmoment-Antworten häufiger auf als antidirektionale und die Lenkung der Aufmerksamkeit im unteren visuellen Feld durch einen vorhergehenden Reiz tritt nicht auf. Interessanterweise kann der Teststimulus, die simultane Verschiebung zweier Streifen nicht nur eine phasische Drehmoment-Antwort, sondern auch einen Landeversuch auslösen. Dieser wird in mehr als der Hälfte aller Fälle, in denen eine Drehmomentantwort gezeigt wird, beobachtet. Eine Untersuchung der neuronalen Korrelate der reizgelenkten Aufmerksamkeit wurde begonnen. In Pilotexperimenten mit Fliegen, die mit Hydroxyharnstoff (HU) behandelt worden waren, zeigte sich, dass die adulten Pilzkörper nicht für diese Art der Lenkung der Aufmerksamkeit, wie sie in der vorliegenden Arbeit untersucht wird, benötigt werden. Des weiteren wurden auch Fliegenmutanten mit Defekten im Dopamin-System getestet. Überraschenderweise flogen TH-Gal4/UAS-shits1 Fliegen wie wildtypische Fliegen und zeigten auch ein normales optomotorisches Verhalten während der anfänglichen Kalibrierungsphase des Experimentes. Sie zeigten jedoch weder phasische Drehmoment-Antworten noch Landeversuche bei 18°C, 25°C oder 30°C. Auch dumb2 Fliegen, die so gut wie keine D1 Dopaminrezeptoren in den Pilzkörpern und im Zentralkomplex exprimieren (Kim et al. 2007), zeigten die gleichen Verhaltensdefekte wie TH-Gal4/UAS-shits1 -Fliegen. Da bei den Dopaminmutanten die phasische Drehmomentantwort fehlte, konnte die Bedeutung von Dopamin für Aufmerksamkeit aus diesem Test nicht abgeleitet werden. Um diese Mutanten zu testen, bedarf es eines anderen Paradigmas. Die Richtung der Aufmerksamkeit kann nicht nur durch äußere Reize gelenkt, sondern auch endogen verändert werden (covert attention). Experimente mit zwei oszillierenden Streifenmustern in der rechten und linken Sehfeld-Hälfte verdeutlichen das Phänomen der endogen gesteuerten Aufmerksamkeit anschaulich, da die Fliegen hierbei charakteristische Drehmomentmuster für das eine oder andere Muster erzeugen. Weil diese Einzelbeobachtungen aber nicht leicht quantifizierbar sind, ist hier ein neuer Ansatz notwendig. Die obigen Experimente mit zwei einzelnen Streifen, die gleichzeitig nach rechts und links versetzt werden, versprechen systematischere Ergebnisse. Die Fliegen neigen stärker dazu einen bestimmten Antwort-Typ (Drehmoment nach links bzw. nach rechts) beizubehalten, als eine statistische Verteilung annehmen ließe. Es ist zu vermuten, dass dieser Effekt durch die Aufmerksamkeit hervorgerufen wird. Die Analyse solcher Experimente könnte also die endogene Steuerung der Aufmerksamkeit beleuchten. KW - Visuelle Aufmerksamkeit KW - Taufliege KW - Visuelle Aufmerksamkeit KW - Drosophila melanogaster KW - Visual attention KW - Drosophila melanogaster KW - torque meter Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69616 ER - TY - THES A1 - Riemensperger, Thomas T1 - Untersuchung prädiktiver Eigenschaften des dopaminergen Systems von Drosophila melanogaster mittels genetisch kodierter Calcium Sensoren T1 - Analysis of predictive features in the dopaminergic System of Drosophila melanogaster using genetically encoded Calcium Sensors N2 - Die Technik des optischen Imaging unter Verwendung DNA-codierter Sensoren ermöglicht es, Messungen neuraler Aktivitäten in genetisch definierten Populationen von Neuronen durchzuführen. In der Vielzahl der verschiedenen entwickelten Sensoren konnten die Calciumsensoren bisher das beste Verhältnis zwischen Signal und Rauschen und die beste zeitliche Auflösung aufzeigen. Hierbei handelt es sich in erster Linie um zwei Typen von Sensoren, zum einen ratiometrische Sensoren, deren Signal auf einem Fluoreszenz Resonanz Energie Transfer (FRET) basiert, und zum anderen um zirkulär permutierte Sensoren, die auf einem modifizierten GFP-Molekül basieren, wobei das Signal auf einer veränderten Protonierung des Chromophors beruht. Beide Arten dieser Sensoren wurden schon erfolgreich zum Messen neuraler Aktivitäten in Nervensystemen verschiedener Tierarten verwendet. Ein Teil dieser Arbeit bestand darin, zu untersuchen, welche Sensoren sich für die Messung an einem lebenden Organismus am besten eignen. Hierfür wurden die Eigenschaften von vier verschiedenen FRET basierten Sensoren und zwei der zyklisch permutierten Sensoren nach Expression im zentralen Nervensystem von Drosophila charakterisiert. Die Sensoren wurden in Neuronen zweiter und dritter Ordnung des olfaktorischen Signalwegs exprimiert und ihre Antworten auf physiologische Duftstimulation oder artifiziell induzierte Depolarisation des Gehirns untersucht. Während die calciumabhängigen Signale der zyklisch permutierten Sensoren in der Regel größer waren als die der FRET basierten Sensoren, zeichneten sich letztere durch ein besseres Signal zu Rausch-Verhältnis aus, wenn Bewegungen der fluoreszierenden Strukturen nicht zu vermeiden waren. Dies war auch der ausschlaggebende Grund für die Verwendung eines FRET basierten Sensors im anschließenden Teil der Arbeit. Im zweiten Teil der Arbeit wurde der Effekt untersucht, den die Paarung eines neutralen Stimulus mit einem bestrafenden Stimulus auf dopaminerge Neurone hat. Eine solche Paarung kann zu einer klassischen Konditionierung führen, einer einfachen Form des Lernens, in welcher das Tier einem ursprünglich neutralen Stimulus einen Wert zuordnet, und dadurch sein Verhalten dem Stimulus gegenüber ändert. Die olfaktorische klassische Konditionierung in Drosophila wird seit vielen Jahren intensiv untersucht, um die molekularen und neuronalen Grundlagen von Lernen und Gedächtnis zu charakterisieren. Dabei hat sich gezeigt, dass besonders die Pilzkörper von essentieller Bedeutung für die Ausbildung eines olfaktorischen Gedächtnisses sind. Während das olfactorische System bei Insekten bereits detailiert analysiert wurde, ist über die Neurone, die den bestrafenden Stimulus vermitteln, nur sehr wenig bekannt. Unter Anwendung des funktionellen optischen Calcium Imaging konnte im Rahmen der Arbeit gezeigt werden, dass die Projektionen von dopaminergen Neuronen im Bereich der Loben der Pilzkörper schwach auf die Präsentation eines Duftes, jedoch sehr stark auf eine Stimulation durch einen Elektroschock antworten. Nach mehrmaliger Paarung eines Duftes mit einem Elektroschock während eines Trainings, verlängert sich die Aktivität dieser dopaminergen Neurone auf den bestraften Duft hin im Test ohne Elektroschock drastisch, während die Antwort auf den Kontrollduft keine signifikanten Veränderungen aufweist. Während bei Säugetieren belohnende Reize bei appetitiven Lernvorgängen über dopaminerge Neurone vermittelt werden, spielen bei Drosophila diese Neurone offensichtlich eine Rolle bei der aversiven Konditionierung. Jedoch blieb, auch wenn sich die Rolle des Dopamins im Laufe der Evolution geändert zu haben scheint, die Fähigkeit dieses Neuronentyps, nicht nur auf einen eintreffenden verstärkenden Stimulus zu reagieren, sondern diesen auch vorhersagen zu können, zwischen Säugern und Drosophila erhalten. N2 - The technique of optical in vivo imaging using genetically encoded fluorescent sensors in transgenic animals has paved the way for real-time monitoring of spatio-temporal activity in the brain. Among the different fluorescent probes, the calcium sensors produce signals with the highest signal to noise ratio and the best temporal resolution. Basically these sensors can be split into two groups, those based on a FRET-effect between two modified green fluorescent proteins (GFPs) and those which make use of on a circular permutation of GFP. Both types have successfully been used for measuring neuronal activity in various species. One part of the present work was to test which of these different sensor types are best suited for an in vivo situation. For this, two members of the class of circularly permutated sensors and four members of the class of FRET based sensors were tested and compaired in Drosophila. Each sensor was expressed in second and third order neurons of the olfactory pathway and the calcium activity evoked by artificial depolarisation or physiological odour stimuli was recorded. Whereas the Calcium dependent change in signal intensity is substantially higher for the circularly permutated sensors, the FRET based sensors tested in this work showed a better signal to noise ratio when movement of the brain structures under investigation could not be prevented. For this reason a FRET based sensor was chosen to measure the activity of dopaminergic neuronsin a classical conditioning paradigm. In the second part of this work the effect of pairing a neutral stimulus with a negative reinforcer (in this case an electric shock) on the activity of dopaminergic neurons was investigated. The pairing of these two stimuli can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila melanogaster is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. In particular the mushroom bodies have been shown to be essential for olfactory memory formation. While the olfactory system of insects has been extensively characterized little is known about the neurons that mediate the reinforcing stimulus. Using the technique of optical calcium imaging it was possible to show that dopaminergic projections in the region of the mushroom body lobes responded weakly to odour presentations, but strongly to the stimulation by an electric shock. After pairing for several times one of two odours presented to the fly with an electric shock (training), the activity of the dopaminergic neurons to the punished odour is significantly prolonged in a test after the training. No change is observed after the training for the control odour that was not paired with the electric shock. Whereas in mammals rewarding stimuli are mediated by dopaminergic neurons, in Drosophila this catecholamine apparently plays a role in mediating aversive reinforcement. Even though the role of dopamine seems to have changed during evolution the capability of dopaminergic neurons to predict a reinforcing stimulus appears to be conserved between Drosophila and mammals. KW - Taufliege KW - Dopaminerge Nervenzelle KW - Calcium KW - Calcium imaging KW - Sensoren KW - Dopamin KW - Drosophila melanogaster KW - prädiktive Eigenschaften KW - Calcium imaging KW - Sensors KW - Dopamine KW - Drosophila melanogaster KW - predictive features Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19041 ER - TY - THES A1 - Reisch, Natasa T1 - Das Cysteine-String-Protein in Drosophila melanogaster: Molekulare und funktionelle Analyse verschiedener CSP-Mutanten; Ein Modell zur räumlich und zeitlich kontrollierten CSP-Expression T1 - The cysteine string protein in Drosophila melanogaster: Molecular and functional analysis of different CSP-mutants; A model for spatial and temporal controlled CSP-expression N2 - Die Exozytose von Neurotransmittern und Peptiden während der Verarbeitung und Weiterleitung von Reizen im Nervensystem wird durch eine komplexe Maschinerie von Proteinen reguliert. Das konservierte Cysteine String Protein (CSP), das gebunden an synaptische und andere sekretorische Vesikel vorliegt, konnte in den vergangenen Jahren als Teil in diesen Prozess eingeordnet werden. Die Frage nach der genauen Funktion von CSP während der Exozytose ist allerdings weiterhin offen. CSP-Nullmutanten in Drosophila melanogaster zeigen temperatursensitive Paralyse und eine extrem verkürzte Lebenserwartung, gepaart mit verminderter Fertilität. In larvalen Nerv-Muskel Präparaten kommt es bei Temperaturen über 29°C zu einem reversiblen Block der elektrophysiologisch messbaren synaptischen Transmission. Die Primärstruktur des Cysteine String Proteins kann in folgende konservierte Sequenzabschnitte unterteilt werden: eine N-terminale Protein Kinase A Phosphorylierungsstelle, eine Region mit Homologie zu einer charakteristischen Domäne von DnaJ-Proteinen (DnaJ-Domäne), einen als Linkerregion bezeichneten Abschnitt, eine cysteinreiche Sequenz, die bei Drosophila aus dem namensgebenden Strang von 11 aufeinanderfolgenden Cysteinen flankiert von 2 Cysteinpaaren besteht, und einen schwächer konservierten C-Terminus, in dem sich auch einzelne Spleißvarianten unterscheiden. Versuche mit Vertebraten konnten zeigen, dass CSP in einem trimeren Komplex aus Hsc70/CSP/SGT vorkommt und bei der Exozytose wahrscheinlich als molekulares Co-Chaperon wirkt. Der Cysteinstrang liegt mehrfach palmityliert vor und ist für die Zielfindung des Proteins zur Vesikelmembran essentiell. In vorangegangenen Arbeiten wurde begonnen, bei Drosophila durch gezielte Mutagenese und Keimbahntransformation die Rolle des Cysteinstrangs, der Linkerregion und des C-Terminus für die Funktion des CSP zu analysieren. In der vorliegenden Dissertation wurden in transgenen Fliegen die Eigenschaften von Isoformen mit vier unterschiedlich mutierten Varianten des Cysteinstrangs (CSLP, SCSP, CLP, SSP) und je Deletionen in der Linkerregion (LΔ8) und im C-terminalen Bereich (CΔ27) charakterisiert. Die subzelluläre Verteilung und veränderte Membranbindungseigenschaften dieser Proteine wurden mithilfe von Membranfraktionierung und Glycerindichtegradienten von Homogenaten der transgenen Mutanten aufgezeigt. Die Isoformen CLP und SSP sind aufgrund der fehlenden Palmitylierung nicht an die Membran der synaptischen Vesikel gebunden, während die Isoform CSLP sowohl in der Vesikelmembranfraktion als auch als lösliches Protein nachgewiesen werden kann. Die flankierenden Cysteinpaare und die verbliebenen Cysteine in den Isoformen CSLP und SCSP erfüllen offenbar noch teilweise die Aufgabe des Cysteinstrangs bei der Zielfindung der Proteine. Eine Depalmitylierung mit Hydroxylamin löst das verkürzte SCSP Protein ebensowenig aus der Membran wie das intakte CSP. Die Ergebnisse dieser Untersuchungen stehen im Einklang mit immunhistochemischen Befunden. Die Deletion bzw. Substitution der zentralen 11 Cysteine in den Isoformen CSLP, CLP und SSP äußert sich in den transgenen Fliegen in einer gleichmäßigeren Verteilung der Proteine, die nicht mehr wie im Wildtyp auf das synaptische Neuropil beschränkt ist. Keine der Isoformen mit verändertem Cysteinstrang ist in der Lage die Funktion des wildtypischen CSP zu übernehmen, da die adulten transgenen Fliegen den temperatursensitiven Phänotyp und eine kurze Lebensdauer ähnlich den Csp-Nullmutanten zeigen. Die Proteinisoformen LΔ8 und CΔ27 dagegen lassen in den biochemischen Analysen keine Abweichung vom Wildtyp erkennen und weisen auch eine wildtypische Verteilung in Kryostat-Gehirnschnitten auf. Die Deletion in der Linkerregion in der Isoform LΔ8 scheint die Funktion des CSPs allerdings einzuschränken, da die entsprechenden transgenen Fliegen bereits bei 38°C, wildtypische Tiere dagegen erst bei 40°C paralysieren. Die in der Literatur beschriebene Interaktion zwischen Drosophila CSP und Syntaxin konnte für die transgen exprimierte größte CSP Isoform CSP1 in Immunpräzipitationsexperimenten mit Drosophila-Kopfhomogenat bestätigt werden. Die Frage nach einer Interaktion zwischen Syntaxin und den anderen untersuchten mutierten CSP-Isoformen bleibt dagegen offen. Der zweite Teil dieser Arbeit befasst sich mit dem Versuch, mithilfe des UAS/Gal4- und des Flippase/FRT -Systems die CSP-Expression räumlich und zeitlich zu kontrollieren. Dazu wurde aufgrund von Datenbankangaben eine minimale FRT-Sequenz aus Oligonukleotiden mit entsprechenden Linkern konstruiert. Das gesamte Csp-Gen beziehungsweise die Csp cDNA1 einschließlich der regulatorischen Sequenzen wurde zwischen zwei gleichgerichteten FRT-Sequenzen pW8 eingebracht. Die Keimbahntransformation führte zu mehreren transgenen Fliegenlinien. Nach aufwendigen Kreuzungen mit Gal4-, UAS-Flippase- und Csp-Null-Linien entstanden Fliegen im CSP-Nullhintergrund, welche eine durch die verwendete Gal4-Linie definierte Expression von Flippase zeigten und das FRT-Konstrukt trugen. Diese Fliegen sollten in Flippase positiven Bereichen keine CSP-Expression mehr zeigen. Verhaltensanalysen an solchen Tieren bei normaler und erhöhter Temperatur könnten dann Aufschluss über die Funktion der Zellen ohne CSP-Expression geben. Leider konnten die erwarteten Veränderungen in der CSP-Expression nicht beobachtet werden, obwohl alle Konstrukte sich nach einer Überprüfung als intakt erwiesen haben. Die Ursache für die fehlende Rekombination zwischen den FRT-Sequenzen ist möglicherweise in einer zu geringen Länge dieser Zielsequenz der Flippase zu suchen. Im dritten Abschnitt der Arbeit wird der Csp-Genlokus und seine benachbarten Gene vorgestellt, und die möglichen Auswirkungen der Deletionen in den zur Verfügung stehenden Mutanten CspU1, CspU1w und CspK16 diskutiert. Aufgrund der Daten aus dem Drosophila Genomprojekt lag die Spekulation nahe, dass der Phänotyp der Deletionsmutanten auch durch eine veränderte Expression der benachbarten Gene stromab- und stromaufwärts des Csp Gens beeinflusst werden könnte. Die Auswertung eines Northern Blots von PolyA+-RNA adulter Fliegen, sowie einfache Verhaltenstests an vorliegenden und neu generierten CSP-Nullmutanten konnten diesen Verdacht allerdings nicht bestätigen. N2 - Exocytosis during synaptic transmission is regulated by a complex machinery of numerous proteins. CSPs (cysteine string proteins), conserved from C.elegans to mamals, are attached to synaptic vesicle membranes and other secretory granules. They were therefore implicated to play a distinct part in this regulated process. However the exact role of the CSP protein in exocytosis is not yet known. Studies of Drosophila in null mutants for the Csp gene revealed a temperature sensitive paralytic phenotype, severely shortened lifespan and fertility. Exposure of larval nerve-muscle preparations to elevated temperatures (>29°C) lead to a reversible block of neurotransmitter release in electrophysiological measurements. The primary structure of the cysteine string protein is characterized by distinct conserved domains: a N-terminal protein kinase A (PKA) phosphorylation site, a region showing high homology to a domain found in DnaJ proteins (DnaJ-domain), a region called linker domain, a cysteine rich region, which in Drosophila comprises the characteristic string of 11 cysteines flanked by two additional pairs of cysteines, and a less conserved C-terminal region, which is absent in various splice variants. Experiments using vertebrates showed that CSP is part of a trimeric complex of Hsc70/CSP/SGT and may possibly act as co-chaperone during exocytotic processes. The cysteine string is found to be modified with multiple palmitoyl residues and appears to be essential for targeting of the protein to the vesicle membrane. In earlier studies mutagenesis and germ-line transformation were used to initiate an analysis on the role of the cysteine string, the linker domain and C-terminal region for CSP function. The present thesis extends this work by characterizing in transgenic flies four different mutated cysteine string isoforms (CSLP, SCSP, CLP, SSP) and deletions affecting the linker domain (LΔ8) and C-terminal region (CΔ27) using transgenic flies. The subcellular distribution and altered membrane binding properties of the mutated isoforms were analyzed using glycerol gradients and membrane fractionation. Due to the lack of palmitoylation CLP and SSP are exclusively found as soluble proteins in the cytosol whereas CSLP can also be found attached to vesicle membranes in membrane fractions. The flanking and remaining cysteines in the isoforms CSLP and SCSP apparently are able to partially direct the proteins to the membrane. The shortened cysteine string in SCSP is sufficient to induce membrane binding and is as resistant to depalmitoylation with hydroxylamine as wildtype CSP. The biochemical results correspond to the immunohistochemical findings, which show an almost homogenous distribution of the proteins CSLP, CLP and SSP, unlike the wildtype staining which is confined to neuropil regions in the adult brain. The mutant isoforms with deleted or substituted cysteine string do neither rescue the temperature sensitive phenotype nor the short life span observed in CSP-null mutants. In contrast the proteins LΔ8 and CΔ27 exhibit wildtype properties in the biochemical assays and the staining pattern of the adult brain. The deletion LΔ8 seems to interfere with regular CSP function in some way, as these transgenic flies paralyze at 38°C whereas wildtype flies paralyze at 40°C. The previously described interaction of CSP and syntaxin in Drosophila could be confirmed by precipitating syntaxin together with the largest CSP isoform CSP1 from Drosophila head homogenates using an antibody against CSP. A possible disruption of this interaction in the mutant transgenic flies could not be shown and remains to be investigated. The second part of this work describes the attempt to temporally and spatially regulate CSP expression by employing the UAS/Gal4- and flippase/FRT-system. Using database information a minimal FRT-sequence with apprropriate linkers was generated from oligonucleotides. The entire Csp gene or Csp cDNA1 with necessary regulatory sequences was ligated between two FRT sites and inserted into the transformation vector pW8. After extensive crossing of transgenic flies carrying the FRT-construct with Gal4-,UAS-flippase-, and Csp-null-lines flies were obtained which expressed the flippase in defined areas of Gal4 expression and contained the FRT construct, all in Csp-null background. Areas positiv for flippase expression should loose transgenic CSP expression. Behavioural analyis of these flies at normal and elevated temperatures should provide functional information on the cells lacking CSP. Unfortunately no differences in behaviour or staining pattern of adult brain could be detected, although all constructs were proven to be functional. The lack of recombination events might be due to the reduced length of the flippase target sequence used. The third project presents the Csp-locus and its neighbouring genes in Drosophila. The possible influence of deletions in the CSP null mutants CspU1, CspU1w and CspK16 on the expression of neighbouring genes are discussed. Based on sequence data offered by the Drosophila genome project it was speculated that these genes might influence the mutant phenotype. Northern blotting of adult head polyA+-RNA, simple tests of behaviour of already known and newly generated Csp null mutants could not confirm this speculation. KW - Taufliege KW - Cysteinderivate KW - Genexpression KW - Cysteine String Protein KW - Drosophila melanogaster KW - Cysteine String Protein KW - Drosophila melanogaster Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6291 ER - TY - THES A1 - Niewalda, Thomas T1 - Neurogenetic analyses of pain-relief learning in the fruit fly T1 - Neurogenetische Analyse von pain-relief Lernen in der Fruchtfliege N2 - All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. Völler and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry. N2 - Tiere müssen lernen, damit sie sich in ihrer Umwelt zurechtfinden und die Herausforderungen meistern können, die ihre Umwelt ihnen bietet. Dies gilt auch für Taufliegen im larvalen und erwachsenen Stadium, wie man mit der Pavlovschen Konditionierung zeigen kann. Der Schwerpunkt dieser Doktorarbeit liegt auf verschiedenen Aspekten der Lernfähigkeit von Taufliegen. In meinem Hauptprojekt erforsche ich die Arten von Lernprozessen, die stattfinden, wenn die Fliegen entweder den Beginn oder das Ende eines Elektroschocks mit einem Duft assoziieren. Wenn Taufliegen einen Duft wahrnehmen, der von einem Elektroschock gefolgt wird, lernen sie, dass dieser Duft Schmerz signalisiert, und werden ihn konsequenterweise in Zukunft vermeiden. Man kann die Abfolge dieser beiden Reize so umkehren, dass der Duft auf den Elektroschock folgt. Durch ein solches Training wird der Duft für die Fliegen zu einem Signal für das Ende des schmerzhaften Elektroschocks und sie werden, wenn sie diesen Duft später wieder einmal wahrnehmen, auf ihn zugehen. Ich berichte im ersten Kapitel über Experimente, die qualitative und parametrische Besonderheiten der letzteren Lernform untersuchen. Ich finde heraus, dass (i) das Lernen über das Ende des Elektroschocks echtes assoziatives Lernen ist, (ii) dass es eine relativ hohe Anzahl von Trainingsdurchgängen erfordert, (iii) dass Kontext-Schock-Training unbedeutend für anschließendes Schock-Duft-Lernen ist. Im zweiten Kapitel gehe ich der Frage nach, ob die genannten beiden Typen von Lernvorgängen gemeinsame genetische Determinanten haben. Was die Genetik anbelangt, teste ich die Lernfähigkeit eines Synapsin-Mutantenstammes, dem das Synapsinprotein fehlt. Lernen über den Beginn des Elektroschocks ist stark reduziert, und Lernen über das Ende des Elektroschocks fehlt gänzlich. Die Reduzierung des Synapsinproteins im Fliegengehirn durch RNAi resultiert in mutantenähnlichen Phänotypen. Dieser Befund bestätigt, dass der Lernphänotyp auf einem Mangel an Synapsin beruht. Die Expression von Synapsin im Pilzkörper der Mutante erlaubt der Fliege, wieder normal zu lernen; dies weist auf die Hinlänglichkeit von Synapsin im Pilzkörper für beide Arten von Lernen hin. In einem weiteren Projekt untersuche ich den Zusammenhang zwischen Wahrnehmung und Physiologie in erwachsenen Taufliegen. Ich benutze Duft-Schock-Konditionierungsexperimente, um basierend auf dem Verhalten der Tiere Ähnlichkeitsränge von Düften zu ermitteln, und finde eine einheitliche Rangfolge der untersuchten Düfte für verschiedene Generalisierungs- und Diskriminierungs-Aufgaben von unterschiedlichem Schwierigkeitsgrad. Schließlich erforsche ich in Kooperation mit T. Völler and A. Fiala, wie der Grad der Verhaltensähnlichkeit /-unähnlichkeit von Düften mit der Physiologie der Fliege in Beziehung steht. Ich kombiniere die Verhaltensdaten mit Daten, die mittels funktioneller Bildgebung unter Verwendung genetisch codierter Kalziumsensoren erhalten wurden. Diese Methode erlaubt, Aktivitätsmuster, die von den untersuchten Düften verursacht werden, entweder in den sensorischen Neuronen oder in den Projektionsneuronen des Antennallobus zu messen. Unsere Interpretation der Ergebnisse ist, dass die Verhaltensähnlichkeit der Düfte auf Ebene der Interneuronen im Antennallobus organisiert wird. Weiterhin erforsche ich die Wirkung von Kochsalz (Natriumchlorid) auf das Reflexverhalten und die Rolle von Natriumchlorid als Belohnung oder Bestrafung im Larvenlernen. Larven der Taufliege verändern ihr Reflexverhalten in Gegenwart von Natriumchlorid in hohem Maße. Larven bevorzugen niedrige Salzkonzentrationen gegenüber einem Substrat ohne Salz; erhöht man die Salzkonzentration jedoch, kehrt sich das Wahlverhalten ins Gegenteil um, bis die Tiere das salzhaltige Substrat stark vermeiden. Ein ähnlicher Zusammenhang zwischen Konzentration und Verhalten wird auch für das Fressverhalten gefunden: Larven fressen von einem Substrat mit niedrigen Salzkonzentrationen geringfügig mehr, von einem Substrat mit hohen Salzkonzentrationen jedoch deutlich weniger als von einem Kontrollsubstrat ganz ohne Salz. Was das Lernen betrifft, wirken relativ schwache Salzkonzentrationen als Belohnung, während hohe Salzkonzentrationen als Bestrafung wirken. Interessanterweise ist die Verhaltens-Konzentrations-Kurve von Reflexverhalten (Wahlverhalten, Fressverhalten) verglichen mit assoziativem Lernen in Richtung höherer Konzentrationen verschoben. Diese Dissoziation könnte eine verschiedenartige Sensitivität der Schaltkreise widerspiegeln. KW - Taufliege KW - Assoziatives Gedächtnis KW - Lernverhalten KW - Synapsine KW - Molekulargenetik KW - Drosophila melanogaster KW - olfaction KW - learning KW - memory KW - synapsin Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65035 ER - TY - THES A1 - Nieratschker, Vanessa T1 - Charakterisierung der Serin-/Threonin-Proteinkinase SRPK3 in Drosophila melanogaster und Phosphorylierungsstudien an Synapsin T1 - Characterization of the serine-/threonine protein kinase SRPK3 in Drosophila melanogaster and phosphorylation studies on synapsin N2 - In einer vorangegangenen Arbeit konnte eine hypomorphe Mutation innerhalb des Genlokus einer putativen Serin-/Threonin-Kinase als Auslöser der Aggregatbildung des Aktive-Zone- Proteins Bruchpilot in larvalen Motoneuronaxonen identifiziert werden (Nieratschker, 2004). Aufgrund der Homologien dieser Kinase zu SR-Proteinkinasen wurde der Name Serin- /Threonin-Proteinkinase 3 (SRPK3) vorgeschlagen. Laut ursprünglicher Annotation der „Flybase“ (http://flybase.bio.indiana.edu) codiert der Genlokus der Srpk3, der auf dem linken Arm des dritten Chromosoms innerhalb der Region 79D4 lokalisiert ist und sich über ca. 10,3 kb erstreckt, für zwei Transkripte (Srpk3-RC und Srpk3-RB). Diese beiden Transkripte haben unterschiedliche Transkriptions- und Translationsstartpunkte und unterscheiden sich in ihrem ersten kodierenden Exon, ab dem vierten Exon sind sie allerdings identisch. Das Srpk3-RCTranskript umfasst ca. 4,2 kb, das Srpk3-RB-Transkript ca. 3,8 kb. Die von diesen Transkripten kodierten Proteine bestehen aus 816 (Srpk3-RC) bzw. 749 (Srpk3-RB) Aminosäuren. Diese beiden ursprünglich annotierten Transkripte konnten durch RT-PCR-Experimente bestätigt werden. Dabei wurde auch ein zusätzliches, alternativ gespleißtes Exon von 159 bp entdeckt, das beiden Transkripten zugeordnet werden kann. Somit codiert der Srpk3-Genlokus für mindestens vier Transkripte, die Transkripte der RC/RF-Transkriptgruppe mit (Srpk3-RF) und ohne (Srpk3-RC) das alternativ gespleißte Exon und die Transkripte der RB/RETranskriptgruppe mit (Srpk3-RE) und ohne (Srpk3-RB) das alternativ gespleißte Exon. Die Existenz eines weiteren Transkriptes Srpk3-RD, die in der aktuellen Version der „Flybase“ annotiert ist, konnte durch RT-PCR-Experimente nicht nachgewiesen werden. Zu Beginn dieser Arbeit lag eine hypomorphe Mutante für die SRPK3 schon vor (Srpk3P1; Eberle, 1995). Diese Linie trägt eine P-Elementinsertion innerhalb des ersten Exons der RC/RF-Transkriptgruppe, die das Leseraster dieser Transkriptgruppe zerstört, so dass in dieser Linie nur die RB/RE-Transkriptgruppe gebildet werden kann. Wie bereits erwähnt, konnte diese Mutation in vorangegangenen Arbeiten bereits als der Auslöser der Aggregatbildung des Bruchpilot-Proteins in larvalen Motoneuronaxone, sowie einiger Verhaltensdefekte identifiziert werden (Nieratschker, 2004; Bock 2006). Diese Verhaltensdefekte ähneln stark denen, die durch einen knock-down der Bruchpilot-Expression mittels RNAi ausgelöst werden (Wagh et al., 2006; Bock, 2006), was auf eine Interaktion beider Proteine schließen lässt. Um nun den Beweis führen zu können, dass tatsächlich diese Mutation die beobachteten Phänotypen verursacht, wurden Rettungsversuche durchgeführt. Die Srpk3-RF-cDNA war dabei in der Lage die durch die hypomorphe Mutation der SRPK3 verursachten Phänotypen vollständig, oder zumindest teilweise zu retten (vgl. auch Bock, 2006; Bloch, 2007). Damit konnte belegt werden, dass die hypomorphe Mutation der SRPK3 tatsächlich die in der Mutante Srpk3P1 beobachteten Phänotypen verursacht. Um die durch in situ Hybridisierung erhaltenen Daten zur Lokalisation der SRPK3 im larvalen Gehirn (Nieratschker, 2004) bestätigen, sowie weitere Daten erhalten zu können, wurden Isoform-spezifische Antisera gegen die SRPK3 generiert. Diese Antiseren sind in der Lage überexprimiertes Protein zu detektieren (Bloch, 2007), allerdings ist es mit diesen Antiseren nicht möglich die SRPK3 in wildtypischen Präparaten nachzuweisen. Weitere Daten zur Lokalisation der SRPK3, die durch die Verwendung eines SRPK3-eGFPFusionsproteins erhalten wurden, zeigten, dass eine der ektopisch überexprimierten SRPK3- Isoformen mit Bruchpilot an der Aktiven Zone kolokalisiert. Dieses Ergebnis, in Verbindung mit den durch die Mutation der SRPK3 verursachten Bruchpilot-Aggregaten in larvalen Motoneuronaxonen und den Verhaltensdefekten, gibt Hinweise auf eine mögliche direkte Interaktion beider Proteine…. N2 - In a previous study, a hypomorphic mutation in the gene locus of a putative serine-/threonine kinase was found to cause aggregates of the active zone protein Bruchpilot in larval motoneuron axons (Nieratschker, 2004). Because of its high homology to SR-protein kinases this gene was named serine-/threonine protein kinase 3 (Srpk3). The 10,3 kb large Srpk3 gene locus is located on the left arm of the third chromosome in the chromosomal region 79D4. According to an earlier annotation in “flybase” (http://flybase.bio.indiana.edu) the Srpk3 gene codes for two transcripts of 4,2 (Srpk3-RC) and 3,8 kb (Srpk3-RB). These two transcripts use different transcription and translation start sites, but from the fourth exon on they are identical. The Srpk3-RC and Srpk3-RB transcripts code for proteins of 816 and 749 amino acids respectively. The existence of these two originally annotated transcripts could be verified by RT-PCR. In addition, an alternatively spliced exon of 159 bp was identified, which is part of both groups of transcripts (Srpk3-RF and Srpk3-RE). Therefore the Srpk3 gene locus codes for at least four transcripts. Srpk3-RB and Srpk3-RC do not contain the newly identified, alternatively spliced exon, whereas Srpk3-RF and Srpk3-RE do. The existence of another transcript (Srpk3- RD) annotated in the current version of “flybase” could not be confirmed by RT-PCR experiments. The hypomorphic BRPK mutant Srpk3P1, which has a P-element insertion in the first exon of the RC/RF group of transcripts that destroys the open reading frame of those isoforms, already existed (Eberle, 1995). Therefore in that line only the RB/RE isoforms are expressed. That hypomorphic mutation was found to cause Bruchpilot aggregates in larval motoneuron axons (Nieratschker, 2004) and in addition several behavioral deficits (Bock, 2006). The behavioral deficits are similar to those caused by a genetic knock-down of the Bruchpilot expression using RNAi (Wagh et al., 2006; Bock, 2006). This observation points towards an exclusive interaction of both proteins. To prove that in fact the mutation of the SRPK3 causes the observed phenotypes, rescue experiments were performed. We were able to revert the mutant phenotypes by expressing the Srpk3-RF cDNA in the nervous system (see also Bock, 2006; Bloch, 2007). Therefore mutation of the SRPK3 indeed causes the observed phenotypes in the hypomorphic BRPK mutant (Srpk3P1). To confirm the data obtained by in situ hybridization on larval brains (Nieratschker, 2004) and to gain more knowledge regarding the localization of the SRPK3, isoform specific antisera have been generated. These antisera recognize over-expressed protein (Bloch, 2007), but they are not able to recognize SRPK3 in wild type animals. Further data about localization of SRPK3 could be provided by using ectopically overexpressed GFP-tagged SRPK3 isoforms. SRPK3-GFP colocalizes with Bruchpilot at the presynaptic active zone. This result along with the Bruchpilot aggregates in larval motoneuron axons and the behavioral deficits of SRPK3 mutants provide further evidence for a possible interaction of both proteins. To investigate, if a complete loss of SRPK3 expression alters the phenotypes observed in the hypomorphic SRPK3 mutant, a SRPK3 null mutant was generated by jump-out mutagenesis. The phenotypic analyses performed with the hypomorphic line Srpk3P1were repeated with the SRPK3 null mutant. It became obvious that the phenotypes were not enhanced by complete loss of SRPK3 expression (also see Bloch, 2007). Regarding the Bruchpilot aggregates in larval motoneuron axons, no significant differences between hypomorphic mutant and null mutant were observed, however behavioral deficits seem to be more severe in the hypomorph (Bloch, 2007)….. KW - Drosophila melanogaster KW - SRPK KW - Bruchpilot KW - Synapsin KW - Neurobiologie KW - Drosophila melanogaster KW - SRPK KW - Bruchpilot KW - Synapsin KW - Neurobiologie KW - Drosophila melanogaster KW - SRPK KW - Bruchpilot KW - Synapsin KW - Neurobiology Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27806 ER -