TY - JOUR T1 - Two-particle Bose-Einstein correlations in pp collisions at \(\sqrt {s}\) = 0.9 and 7 TeV measured with the ATLAS detector JF - European Physical Journal C: Particles and Fields N2 - The paper presents studies of Bose–Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range p\(_{T}\) > 100 MeV and |η| <  2.5 in proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb\(^{−1}\), 190 μb\(^{−1}\) and 12.4 nb\(^{−1}\) for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated. KW - ATLAS detector KW - proton-proton collision KW - Bose-Einstein Correlations Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150222 VL - 75 IS - 10 ER - TY - JOUR T1 - Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ℓℓ/ℓν/νν+b\(\overline{b}\) final states with the ATLAS detector JF - European Physical Journal C: Particles and Fields N2 - A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ℓℓ/ℓν/νν+b\(\overline{b}\) final states is performed using 20.3 fb\(^{−1}\) of pp collision data recorded at \(\sqrt {s}\) = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH / ZH invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets. KW - Higgs boson KW - W boson KW - Z boson KW - ATLAS detector Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150075 VL - 75 IS - 6 ER - TY - JOUR T1 - Measurement of the branching ratio Γ(Λ\(^0_b\)→ψ(2S)Λ\(^0\))/Γ(Λ\(^0_b\)→J/ψΛ\(^0\)) with the ATLAS detector JF - Physics Letters B N2 - An observation of the View the Λ\(^0_b\)→ψ(2S)Λ\(^0\) decay and a comparison of its branching fraction with that of the Λ\(^0_b\)→J/ψΛ\(^0\) decay has been made with the ATLAS detector in proton–proton collisions at \(\sqrt {s}\)=8 TeV at the LHC using an integrated luminosity of 20.6 fb\(^{-1}\). The J/ψJ/ψ and ψ(2S) mesons are reconstructed in their decays to a muon pair, while the Λ\(^0\)→pπ\(^-\) decay is exploited for the Λ\(^0\) baryon reconstruction. The Λ\(^0_b\) baryons are reconstructed with transverse momentum p\(_T\)>10 GeV pT>10 GeV and pseudorapidity |η|<2.1. The measured branching ratio of the Λ\(^0_b\)→ψ(2S)Λ\(^0\) and Λ\(^0_b\)→J/ψΛ\(^0\) decays is Γ(Λ\(^0_b\)→ψ(2S)Λ\(^0\))/Γ(Λ\(^0_b\)→J/ψΛ\(^0\))=0.501±0.033(stat)±0.019(syst), lower than the expectation from the covariant quark model. KW - physics KW - proton–proton collisions KW - Large Hadron Collider KW - decay Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143375 VL - 751 ER - TY - JOUR T1 - A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 \(pp\)-collision data with the ATLAS detector JF - European Physical Journal C N2 - A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb\(^{−1}\) of proton–proton collision data at \(\sqrt{s}\) = 7 TeV from 2010 and 0.1 nb\(^{−1}\) of data at \(\sqrt{s}\) = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of GEANT4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2–5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS. KW - high energy physics KW - ATLAS detector KW - hadronic calorimeter KW - charged hadron response KW - identified particle response KW - hadronic physics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173690 VL - 77 IS - 26 ER - TY - JOUR T1 - Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector JF - Physics Letters B N2 - A search for the associated production of the Higgs boson with a top quark pair is performed in multilepton final states using 20.3 fb\(^{−1}\) of proton–proton collision data recorded by the ATLAS experiment at \(\sqrt {s}\)=8 TeV at the Large Hadron Collider. Five final states, targeting the decays H→WW\(^{*}\), ττ, and ZZ\(^{*}\), are examined for the presence of the Standard Model (SM) Higgs boson: two same-charge light leptons (e or μ) without a hadronically decaying τ lepton; three light leptons; two same-charge light leptons with a hadronically decaying τ lepton; four light leptons; and one light lepton and two hadronically decaying τ leptons. No significant excess of events is observed above the background expectation. The best fit for the t\(\overline{t}\)H production cross section, assuming a Higgs boson mass of 125 GeV, is 2.1\(^{+1.4}_{-1.2}\) times the SM expectation, and the observed (expected) upper limit at the 95% confidence level is 4.7 (2.4) times the SM rate. The p-value for compatibility with the background-only hypothesis is 1.8σ; the expectation in the presence of a Standard Model signal is 0.9σ. KW - physics KW - associated production KW - Higgs boson Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144231 VL - 749 ER - TY - JOUR T1 - Measurement of exclusive γγ→ℓ\(^{+}\)ℓ\(^{−}\) production in proton–proton collisions at \(\sqrt {s}\)=7 TeV with the ATLAS detector JF - Physics Letters B N2 - This Letter reports a measurement of the exclusive γγ→ℓ\(^{+}\)ℓ\(^{−}\) (ℓ=e, μℓ=e, μ) cross-section in proton–proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of 4.6 fb\(^{−1}\). For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be \(^{excl.}_{γγ→e^{+}e^{-}}\)=0.428 ± 0.035 (stat.) ± 0.018 (syst.) pb for a phase–space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum p\(_{T}\)>12 GeV and pseudorapidity |η|<2.4. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum p\(_{T}\)>10 GeV and pseudorapidity |η|<2.4, the cross-section is determined to be \(^{excl.}_{γγ→μ^{+}μ^{-}}\) =0.628 ± 0.032 (stat.) ± 0.021 (syst.) pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction. KW - physics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144247 VL - 749 ER - TY - JOUR T1 - Measurement of colour flow with the jet pull angle in t\(\overline{t}\) events using the ATLAS detector at \(\sqrt {s}\)=8 TeV JF - Physics Letters B N2 - The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard-scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in t\(\overline{t}\) events with one W boson decaying leptonically and the other decaying to jets using 20.3 fb\(^{−1}\) of data recorded with the ATLAS detector at a centre-of-mass energy of \(\sqrt {s}\)=8 TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models. KW - physics KW - colour flow Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144229 VL - 750 ER - TY - JOUR T1 - Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 fb\(^{-1}\) of root s=13 TeV \({pp}\) collision data with the ATLAS detector JF - Journal of High Energy Physics N2 - The results of a search for the direct pair production of top squarks, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum are reported. The analysis also targets spin-0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. The search uses data from proton-proton collisions delivered by the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of root s = 13TeV and recorded by the ATLAS detector, corresponding to an integrated luminosity of 36 fb(-1). A wide range of signal scenarios with different mass-splittings between the top squark, the lightest neutralino and possible intermediate supersymmetric particles are considered, including cases where the W bosons or the top quarks produced in the decay chain are off-shell. No significant excess over the Standard Model prediction is observed. The null results are used to set exclusion limits at 95% confidence level in several supersymmetry benchmark models. For pair-produced top-squarks decaying into top quarks, top-squark masses up to 940 GeV are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section. KW - Hadron-Hadron scattering (experiments) KW - Dark-matter production KW - Symmetry-breaking KW - Plus plus KW - Model KW - Supersymmetry KW - Program KW - LHS KW - Mass KW - Extension KW - Physics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220733 VL - 108 IS - 6 ER - TY - JOUR T1 - Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton-proton collisions at root s=13 TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks into the lightest neutralino ((chi) over tilde (0)(1)) is reported. It uses LHC proton-proton collision data at a centre-of-mass energy root s = 13TeV with an integrated luminosity of 36.1 fb(-1) collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing large missing transverse momentum and several energetic jets, at least three of which must be identified as originating from b-quarks. To increase the sensitivity, the sample is divided into subsamples based on the presence or absence of electrons or muons. No excess is found above the predicted background. For (chi) over tilde (0)(1) masses below approximately 300 GeV, gluino masses of less than 1.97 (1.92) TeV are excluded at 95% confidence level in simplified models involving the pair production of gluinos that decay via top (bottom) squarks. An interpretation of the limits in terms of the branching ratios of the gluinos into third-generation squarks is also provided. These results improve upon the exclusion limits obtained with the 3.2 fb(-1) of data collected in 2015. KW - Hadron-Hadron scattering (experiments) KW - Parton distributions KW - Gluino production KW - Plus plus KW - Squark KW - Extension KW - Decay Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220748 VL - 107 IS - 6 ER - TY - JOUR T1 - Search for triboson \({W^\pm}{W^\pm}{W^\mp}\) production in \(pp\) collisions at \(\sqrt{s}\) = 8 TeV with the ATLAS detector JF - European Physical Journal C N2 - This paper reports a search for triboson \({W^\pm}{W^\pm}{W^\mp}\) production in two decay channels (\({W^\pm}{W^\pm}{W^\mp}\) → \({ℓ^\pm}{νℓ^\pm}{νℓ^\mp}{ν}\) and \({W^\pm}{W^\pm}{W^\mp}\) → \({ℓ^\pm}{νℓ^\pm}{νjj}\) with \(ℓ=e,μ\)) in proton-proton collision data corresponding to an integrated luminosity of 20.3 fb\(^{−1}\) at a centre-of-mass energy of 8 TeV with the ATLAS detector at the Large Hadron Collider. Events with exactly three charged leptons, or two leptons with the same electric charge in association with two jets, are selected. The total number of events observed in data is consistent with the Standard Model (SM) predictions. The observed 95% confidence level upper limit on the SM \({W^\pm}{W^\pm}{W^\mp}\) production cross section is found to be 730 fb with an expected limit of 560 fb in the absence of SM \({W^\pm}{W^\pm}{W^\mp}\) production. Limits are also set on \(WWWW\) anomalous quartic gauge couplings. KW - high energy physics KW - triboson production KW - triple gauge couplings (TGCs) KW - quartic gauge couplings (QGCs) KW - decay channels Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173710 VL - 77 IS - 141 ER -