TY - JOUR A1 - Gutknecht, Lise A1 - Popp, Sandy A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Göppner, Corinna A1 - Post, Antonia A1 - Reif, Andreas A1 - van den Hove, Daniel A1 - Strekalova, Tatyana A1 - Schmitt, Angelika A1 - Colaςo, Maria B. N. A1 - Sommer, Claudia A1 - Palme, Rupert A1 - Lesch, Klaus-Peter T1 - Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice JF - Psychopharmacology N2 - Rationale While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. Objective Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. Results Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2\(^{−/−}\)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2\(^{−/−}\) males displayed increased impulsivity and high aggressiveness. Tph2\(^{−/−}\) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2\(^{−/−}\) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. Conclusions Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality. KW - Serotonin KW - Tryptophan hydroxylase-2 (Tph2) KW - chronic stress KW - gene-by-environment interaction KW - anxiety KW - fear KW - depression KW - aggression Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154586 VL - 232 SP - 2429 EP - 2441 ER - TY - JOUR A1 - Gorlova, Anna A1 - Pavlov, Dmitrii A1 - Anthony, Daniel C. A1 - Ponomarev, Eugene D. A1 - Sambon, Margaux A1 - Proshin, Andrey A1 - Shafarevich, Igor A1 - Babaevskaya, Diana A1 - Lesch, Klaus-Peter A1 - Bettendorff, Lucien A1 - Strekalova, Tatyana T1 - Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice JF - Neuropharmacology N2 - The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled ‘Current status of the neurobiology of aggression and impulsivity’. KW - aggression KW - emotional stress KW - brain oxidative stress KW - plasticity KW - thiamine KW - mice Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227439 VL - 156 ER - TY - JOUR A1 - Ferero, Andrea A1 - Rivero, Olga A1 - Wäldchen, Sina A1 - Ku, Hsing-Ping A1 - Kiser, Dominik P. A1 - Gärtner, Yvonne A1 - Pennington, Laura S. A1 - Waider, Jonas A1 - Gaspar, Patricia A1 - Jansch, Charline A1 - Edenhofer, Frank A1 - Resink, Thérèse J. A1 - Blum, Robert A1 - Sauer, Markus A1 - Lesch, Klaus-Peter T1 - Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain JF - Frontiers in Cellular Neuroscience N2 - Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders. KW - serotonin KW - cadherin-13 (CDH13) KW - T-cadherin KW - neurodevelopment KW - psychiatric disorders KW - radial glia KW - dorsal raphe KW - prefrontal cortex Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170313 VL - 11 IS - 307 ER - TY - JOUR A1 - Couch, Yvonne A1 - Trofimov, Alexander A1 - Markova, Natalyia A1 - Nikolenko, Vladimir A1 - Steinbusch, Harry W. A1 - Chekhonin, Vladimir A1 - Schroeter, Careen A1 - Lesch, Klaus-Peter A1 - Anthony, Daniel C. A1 - Strekalova, Tatyana T1 - Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice JF - Journal of Neuroinflammation N2 - Background Aggression, hyperactivity, impulsivity, helplessness and anhedonia are all signs of depressive-like disorders in humans and are often reported to be present in animal models of depression induced by stress or by inflammatory challenges. However, chronic mild stress (CMS) and clinically silent inflammation, during the recovery period after an infection, for example, are often coincident, but comparison of the behavioural and molecular changes that underpin CMS vs a mild inflammatory challenge and impact of the combined challenge is largely unexplored. Here, we examined whether stress-induced behavioural and molecular responses are analogous to lipopolysaccharide (LPS)-induced behavioural and molecular effects and whether their combination is adaptive or maladaptive. Methods Changes in measures of hedonic sensitivity, helplessness, aggression, impulsivity and CNS and systemic cytokine and 5-HT-system-related gene expression were investigated in C57BL/6J male mice exposed to chronic stress alone, low-dose LPS alone or a combination of LPS and stress. Results When combined with a low dose of LPS, chronic stress resulted in an enhanced depressive-like phenotype but significantly reduced manifestations of aggression and hyperactivity. At the molecular level, LPS was a strong inducer of TNFα, IL-1β and region-specific 5-HT2A mRNA expression in the brain. There was also increased serum corticosterone as well as increased TNFα expression in the liver. Stress did not induce comparable levels of cytokine expression to an LPS challenge, but the combination of stress with LPS reduced the stress-induced changes in 5-HT genes and the LPS-induced elevated IL-1β levels. Conclusions It is evident that when administered independently, both stress and LPS challenges induced distinct molecular and behavioural changes. However, at a time when LPS alone does not induce any overt behavioural changes per se, the combination with stress exacerbates depressive and inhibits aggressive behaviours. KW - SERT KW - Chronic stress KW - LPS KW - Aggressive behaviour KW - S-HT KW - Cytokines Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165676 VL - 13 IS - 108 ER - TY - JOUR A1 - Cline, Brandon H. A1 - Costa-Nunes, Joao P. A1 - Cespuglio, Raymond A1 - Markova, Natalyia A1 - Santos, Ana I. A1 - Bukhman, Yury V. A1 - Kubatiev, Aslan A1 - Steinbusch, Harry W. M. A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression JF - Frontiers in Behavioral Neuroscience N2 - Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naive DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naive animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. KW - phosphorylated glycogen synthase kinase-3beta (pGSK-3beta) KW - hippocampal plasticity KW - sleep EEG KW - aging KW - NMDA receptor subunits NR2A and NR2B KW - dicholine succinate KW - insulin receptor KW - chronic stress Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143992 VL - 9 IS - 37 ER - TY - JOUR A1 - Brevik, Erlend J A1 - van Donkelaar, Marjolein M. J. A1 - Weber, Heike A1 - Sánchez-Mora, Cristina A1 - Jacob, Christian A1 - Rivero, Olga A1 - Kittel-Schneider, Sarah A1 - Garcia-martinez, Iris A1 - Aebi, Marcel A1 - van Hulzen, Kimm A1 - Cormand, Bru A1 - Ramos-Quiroga, Josep A A1 - Lesch, Klaus-Peter A1 - Reif, Andreas A1 - Ribases, Marta A1 - Franke, Barbara A1 - Posserud, Maj-Britt A1 - Johansson, Stefan A1 - Lundervold, Astri J. A1 - Haavik, Jan A1 - Zayats, Tetyana T1 - Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder JF - American Journal of Medical Genetics Part B-Neuropsychiatric Genetics N2 - Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P<5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders. KW - Large multicenter ADHD KW - Antisocial behavior KW - Diagnostic approach KW - Rating scale KW - Gene KW - Deficit/hyperactivity disorder KW - Susceptibility loci KW - Conduct disorder KW - Association KW - Adult KW - ADHD KW - Aggression KW - GWAS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188116 VL - 171B IS - 5 ER - TY - JOUR A1 - Bodden, Carina A1 - Richter, S. Helene A1 - Schreiber, Rebecca S. A1 - Kloke, Vanessa A1 - Gerß, Joachim A1 - Palme, Rupert A1 - Lesch, Klaus-Peter A1 - Lewejohann, Lars A1 - Kaiser, Sylvia A1 - Sachser, Norbert T1 - Benefits of adversity?! How life history affects the behavioral profile of mice varying in serotonin transporter genotype JF - Frontiers in Behavioral Neuroscience N2 - Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety like behavior ("allostatic load"). The alternative "mismatch hypothesis" suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HIT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered. KW - anxiety-like behavior KW - maternal care KW - dangerous world KW - animal behavior KW - match-mismatch KW - chronic social stress KW - elevated plus-maze KW - 5-HTT KW - life history KW - predictive adaptive response hypothesis KW - developmental plasticity KW - knockout mice KW - environmental enrichment KW - allostatic load Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143723 VL - 9 IS - 47 ER - TY - JOUR A1 - Aboagye, B. A1 - Weber, T. A1 - Merdian, H. L. A1 - Bartsch, D. A1 - Lesch, K. P. A1 - Waider, J. T1 - Serotonin deficiency induced after brain maturation rescues consequences of early life adversity JF - Scientific Reports N2 - Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKOxMS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders. KW - emotion KW - molecular medicine KW - neuroscience Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258626 SN - 2045-2322 VL - 11 IS - 1 ER -