TY - JOUR A1 - Vona, Barbara A1 - Hofrichter, Michaela A. H. A1 - Schröder, Jörg A1 - Shehata-Dieler, Wafaa A1 - Nanda, Indrajit A1 - Haaf, Thomas T1 - Hereditary hearing loss SNP-microarray pilot study JF - BMC Research Notes N2 - Objectives: Despite recent advancements in diagnostic tools, the genomic landscape of hereditary hearing loss remains largely uncharacterized. One strategy to understand genome-wide aberrations includes the analysis of copy number variation that can be mapped using SNP-microarray technology. A growing collection of literature has begun to uncover the importance of copy number variation in hereditary hearing loss. This pilot study underpins a larger effort that involves the stage-wise analysis of hearing loss patients, many of whom have advanced to high-throughput sequencing analysis. Data description: Our data originate from the Infinium HumanOmni1-Quad v1.0 SNP-microarrays (Illumina) that provide useful markers for genome-wide association studies and copy number variation analysis. This dataset comprises a cohort of 108 individuals (99 with hearing loss, 9 normal hearing family members) for the purpose of understanding the genetic contribution of copy number variations to hereditary hearing loss. These anonymized SNP-microarray data have been uploaded to the NCBI Gene Expression Omnibus and are intended to benefit other investigators interested in aggregating platform-matched array patient datasets or as part of a supporting reference tool for other laboratories to better understand recurring copy number variations in other genetic disorders. KW - copy number variation KW - genotyping arrays KW - hereditary hearing loss KW - illumina KW - infinium HumanOmni1-Quad KW - SNP-microarray Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176239 VL - 11 IS - 391 ER - TY - JOUR A1 - Prelog, Martina A1 - Hilligardt, Deborah A1 - Schmidt, Christian A. A1 - Przybylski, Grzegorz K. A1 - Leierer, Johannes A1 - Almanzar, Giovanni A1 - El Hajj, Nady A1 - Lesch, Klaus-Peter A1 - Arolt, Volker A1 - Zwanzger, Peter A1 - Haaf, Thomas A1 - Domschke, Katharina T1 - Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder? JF - PLoS ONE N2 - Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders. KW - DNA methylation KW - antidepressants KW - regulatory T cells KW - panic disorder KW - treatment guidelines KW - telomere length KW - inflammatory diseases KW - anxiety disorders Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179684 VL - 11 IS - 6 ER - TY - JOUR A1 - Haertle, Larissa A1 - Maierhofer, Anna A1 - Böck, Julia A1 - Lehnen, Harald A1 - Böttcher, Yvonne A1 - Blüher, Matthias A1 - Schorsch, Martin A1 - Potabattula, Ramya A1 - El Hajj, Nady A1 - Appenzeller, Silke A1 - Haaf, Thomas T1 - Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals JF - PLoS ONE N2 - Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted MEST promoter and the paternally imprinted MEG3 intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal MEST and the maternal MEG3 IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal MEST and paternal MEG3 alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the MEST promoter and the MEG3 IG DMR, and to a lesser extent, for the paternally imprinted secondary MEG3 promoter and the maternally imprinted PEG3 promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals. KW - DNA methylation KW - genomic imprinting KW - polymerase chain reaction KW - blood KW - epigenetics KW - sequence alignment KW - sperm Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170433 VL - 12 IS - 8 ER - TY - JOUR A1 - Pfeiffer, Susanne A1 - Krüger, Jacqueline A1 - Maierhofer, Anna A1 - Böttcher, Yvonne A1 - Klöting, Nora A1 - El Hajj, Nady A1 - Schleinitz, Dorit A1 - Schön, Michael R. A1 - Dietrich, Arne A1 - Fasshauer, Mathias A1 - Lohmann, Tobias A1 - Dreßler, Miriam A1 - Stumvoll, Michael A1 - Haaf, Thomas A1 - Blüher, Matthias A1 - Kovacs, Peter T1 - Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction JF - Scientific Reports N2 - Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity. KW - gene expression KW - adipose KW - hypoxia-inducible factor 3A KW - adipose tissue dysfunction KW - obesity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167662 VL - 6 IS - 27969 ER - TY - JOUR A1 - Poot, Martin A1 - Haaf, Thomas T1 - Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements JF - Molecular Syndromology N2 - Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C(JMJD2C) as a novel candidate gene for mental retardation. KW - triplosufficiency KW - complex chromosome rearrangements KW - DNA double-strand break KW - haploinsufficiency KW - mixed mutation mechanisms KW - structural genome variations Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196524 SN - 1661-8769 SN - 1661-8777 N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 6 IS - 3 ER - TY - JOUR A1 - Galetzka, Danuta A1 - Hansmann, Tamara A1 - El Hajj, Nady A1 - Weis, Eva A1 - Irmscher, Benjamin A1 - Ludwig, Marco A1 - Schneider-Rätzke, Brigitte A1 - Kohlschmidt, Nicolai A1 - Beyer, Vera A1 - Bartsch, Oliver A1 - Zechner, Ulrich A1 - Spix, Claudia A1 - Haaf, Thomas T1 - Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer JF - Epigenetics N2 - We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development. KW - BRCA1 KW - childhood cancer KW - DNA Methylation KW - epimutation KW - monozygotic twins KW - secondary cancer KW - somatic mosaicism Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125386 VL - 7 IS - 1 ER - TY - JOUR A1 - Schmid, Michael A1 - Steinlein, Claus A1 - Haaf, Thomas A1 - Mijares-Urrutia, Abraham T1 - Nascent ZW Sex Chromosomes in Thecadactylus rapicauda (Reptilia, Squamata, Phyllodactylidae) JF - Cytogenetic and Genome Research N2 - The chromosomes of the turnip-tailed gecko Thecadactylus rapicauda from the Falcón State in northern Venezuela were examined by means of conventional staining, a variety of banding techniques and in situ hybridization with an 18S + 28S rDNA probe. In female specimens, C-banding analyses detected a cryptic W sex chromosome-associated interstitial heterochromatic segment which is absent in the Z sex chromosome. These ZW sex chromosomes are considered to be in a nascent stage of morphological differentiation and are absent in T. rapicauda collected in Guatemala. The amount, location and fluorochrome affinities of constitutive heterochromatin, the position of the nucleolus organizer region, and the genome sizes of female and male individuals were determined. The previously published cytogenetic data on T. rapicauda are discussed. KW - ZW sex chromosomes KW - Gecko Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199041 SN - 1424-8581 SN - 1424-859X N1 - This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. VL - 143 IS - 4 ER - TY - JOUR A1 - Doll, Julia A1 - Kolb, Susanne A1 - Schnapp, Linda A1 - Rad, Aboulfazl A1 - Rüschendorf, Franz A1 - Khan, Imran A1 - Adli, Abolfazl A1 - Hasanzadeh, Atefeh A1 - Liedtke, Daniel A1 - Knaup, Sabine A1 - Hofrichter, Michaela AH A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - Kong, Il-Keun A1 - Kim, Hyung-Goo A1 - Haaf, Thomas A1 - Vona, Barbara T1 - Novel loss-of-function variants in CDC14A are associated with recessive sensorineural hearing loss in Iranian and Pakistani patients JF - International Journal of Molecular Sciences N2 - CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss. KW - CDC14A KW - DFNB32 KW - autosomal recessive hearing loss KW - exome sequencing KW - splicing KW - frameshift KW - non-sense mediated mRNA decay Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285142 SN - 1422-0067 VL - 21 IS - 1 ER - TY - JOUR A1 - Nanda, Indrajit A1 - Schröder, Sarah K. A1 - Steinlein, Claus A1 - Haaf, Thomas A1 - Buhl, Eva M. A1 - Grimm, Domink G. A1 - Weiskirchen, Ralf T1 - Rat hepatic stellate cell line CFSC-2G: genetic markers and short tandem repeat profile useful for cell line authentication JF - Cells N2 - Hepatic stellate cells (HSCs) are also known as lipocytes, fat-storing cells, perisinusoidal cells, or Ito cells. These liver-specific mesenchymal cells represent about 5% to 8% of all liver cells, playing a key role in maintaining the microenvironment of the hepatic sinusoid. Upon chronic liver injury or in primary culture, these cells become activated and transdifferentiate into a contractile phenotype, i.e., the myofibroblast, capable of producing and secreting large quantities of extracellular matrix compounds. Based on their central role in the initiation and progression of chronic liver diseases, cultured HSCs are valuable in vitro tools to study molecular and cellular aspects of liver diseases. However, the isolation of these cells requires special equipment, trained personnel, and in some cases needs approval from respective authorities. To overcome these limitations, several immortalized HSC lines were established. One of these cell lines is CFSC, which was originally established from cirrhotic rat livers induced by carbon tetrachloride. First introduced in 1991, this cell line and derivatives thereof (i.e., CFSC-2G, CFSC-3H, CFSC-5H, and CFSC-8B) are now used in many laboratories as an established in vitro HSC model. We here describe molecular features that are suitable for cell authentication. Importantly, chromosome banding and multicolor spectral karyotyping (SKY) analysis demonstrate that the CFSC-2G genome has accumulated extensive chromosome rearrangements and most chromosomes exist in multiple copies producing a pseudo-triploid karyotype. Furthermore, our study documents a defined short tandem repeat (STR) profile including 31 species-specific markers, and a list of genes expressed in CFSC-2G established by bulk mRNA next-generation sequencing (NGS). KW - liver KW - extracellular matrix KW - hepatic stellate cell KW - myofibroblast KW - fibrosis KW - stress fibers KW - spectral karyotyping KW - rhodamine–phalloidin stain KW - next-generation sequencing KW - STR profile Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288067 SN - 2073-4409 VL - 11 IS - 18 ER - TY - JOUR A1 - Weis, Eva A1 - Schoen, Holger A1 - Victor, Anja A1 - Spix, Claudia A1 - Ludwig, Marco A1 - Schneider-Raetzke, Brigitte A1 - Kohlschmidt, Nicolai A1 - Bartsch, Oliver A1 - Gerhold-Ay, Aslihan A1 - Boehm, Nils A1 - Grus, Franz A1 - Haaf, Thomas A1 - Galetzka, Danuta T1 - Reduced mRNA and Protein Expression of the Genomic Caretaker RAD9A in Primary Fibroblasts of Individuals with Childhood and Independent Second Cancer JF - PLoS ONE N2 - Background: The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell cycle control and DNA repair, play a critical role in the development of secondary cancer. Methodology/Findings: To identify factors that may influence the susceptibility for second cancer formation, we recruited 20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to one-cancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the two-cancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both untreated and 1 Gy gamma-irradiated cells of two-cancer patients. Conclusions/Significance: Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients. KW - DNA methylation KW - Malignant neoplasms KW - Genes KW - Instability KW - Stability KW - Susceptibility KW - Checkpoints KW - Repair KW - Damage Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141838 VL - 6 IS - 10 ER -