TY - JOUR A1 - Beyer, Jacob A1 - Goth, Florian A1 - Müller, Tobias T1 - Better integrators for functional renormalization group calculations JF - The European Physical Journal B N2 - We analyze a variety of integration schemes for the momentum space functional renormalization group calculation with the goal of finding an optimized scheme. Using the square lattice t-t' Hubbard model as a testbed we define and benchmark the quality. Most notably we define an error estimate of the solution for the ordinary differential equation circumventing the issues introduced by the divergences at the end of the FRG flow. Using this measure to control for accuracy we find a threefold reduction in number of required integration steps achievable by choice of integrator. We herewith publish a set of recommended choices for the functional renormalization group, shown to decrease the computational cost for FRG calculations and representing a valuable basis for further investigations. KW - functional renormalization group KW - FRG KW - FRG calculations KW - integrators KW - ordinary differential equations KW - ODE Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325131 SN - 1434-6028 VL - 95 IS - 7 ER - TY - THES A1 - Dirr, Gunther T1 - Differentialgleichungen in Frécheträumen T1 - Differential equations in Fréchet Spaces N2 - Teil 1 der Arbeit beinhaltet eine Zusammenfassung grundlegender funktionalanalytischer Ergebnisse sowie eine Einführung in die Integral- und Differentialrechnung in Frécheträumen. Insbesondere wird in Kapitel 2 eine ausführliche Darstellung des Lebesgue-Bochner-Integrals auf Frécheträumen geliefert. Teil 2 behandelt die Theorie der linearen Differentialgleichungen auf Frécheträumen. Dazu werden in Kapitel 3 stark differenzierbare Halbgruppen und deren infinitesimale Generatoren charakterisiert. In Kapitel 4 werden diese Ergebnisse benutzt, um lineare Evolutionsgleichungen (von hyperbolischem oder parabolischem Typ) zu untersuchen. Teil 3 enthält die zentralen Resultate der Arbeit. In Kapitel 5 werden zwei Existenz- und Eindeutigkeitssätze für nichtlineare gewöhnliche Differentialgleichungen in zahmen Frécheträumen bewiesen. Kapitel 6 liefert eine Anwendung der Ergebnisse aus Kapitel 5 auf nichtlineare partielle Differentialgleichungen erster Ordnung. N2 - The first part of this thesis gives a summary on some basic results in functional analysis and an introduction to calculus in Fréchet spaces. Particularly, a detailed treatment of the Lebesgue-Bochner integral in Fréchet spaces is developed in chapter 2. Part 2 is devoted to the theory of linear differential equations in Fréchet spaces. Strongly differential semigroups and their infinitesimal generators are characterized in chapter 3. These results are used in chapter 4 to study linear evolution equations (of hyperbolic or parabolic type). The main results of this thesis are contained in part 3. In chapter 5 two existence and uniqueness theorems for nonlinear ordinary differential equations in tame Fréchet spaces are proved. Theses results are applied in chapter 6 to nonlinear partial differential equations of first order. KW - Differentialgleichung KW - Fréchet-Raum KW - gewöhnliche Differentialgleichungen KW - partielle Differentialgleichungen KW - Frécheträume KW - ordinary differential equations KW - partial differential equations KW - Fréchet spaces Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1180417 ER - TY - THES A1 - Pröll, Sebastian T1 - Stability of Switched Epidemiological Models T1 - Stabilität geschalteter epidemiologischer Modelle N2 - In this thesis it is shown how the spread of infectious diseases can be described via mathematical models that show the dynamic behavior of epidemics. Ordinary differential equations are used for the modeling process. SIR and SIRS models are distinguished, depending on whether a disease confers immunity to individuals after recovery or not. There are characteristic parameters for each disease like the infection rate or the recovery rate. These parameters indicate how aggressive a disease acts and how long it takes for an individual to recover, respectively. In general the parameters are time-varying and depend on population groups. For this reason, models with multiple subgroups are introduced, and switched systems are used to carry out time-variant parameters. When investigating such models, the so called disease-free equilibrium is of interest, where no infectives appear within the population. The question is whether there are conditions, under which this equilibrium is stable. Necessary mathematical tools for the stability analysis are presented. The theory of ordinary differential equations, including Lyapunov stability theory, is fundamental. Moreover, convex and nonsmooth analysis, positive systems and differential inclusions are introduced. With these tools, sufficient conditions are given for the disease-free equilibrium of SIS, SIR and SIRS systems to be asymptotically stable. N2 - In der vorliegenden Arbeit werden Möglichkeiten aufgezeigt, wie man die Ausbreitung von Infektionskrankheiten mit Hilfe von mathematischen Modellen beschreiben kann. Anhand solcher Modelle möchte man mehr über die Dynamik von Epidemien lernen und vorhersagen, wie sich eine gegebene Infektionskrankheit innerhalb einer Population ausbreitet. Zunächst werden gewöhnliche Differentialgleichungen verwendet, um grundlegende epidemiologische Modelle aufzustellen. Hierbei unterscheidet man sogenannte SIR und SIS Modelle, je nachdem ob die betrachtete Krankheit einem Individuum nach seiner Heilung Immunität verleiht oder nicht. Charakteristisch für Infektionskrankheiten sind Parameter wie die Infektionsrate oder die Heilungsrate. Sie geben an, wie ansteckend eine Krankheit ist bzw. wie schnell eine Person nach einer Erkrankung wieder gesund wird. Im Allgemeinen sind diese Parameter abhängig von bestimmten Bevölkerungsgruppen und verändern sich mit der Zeit. Daher werden am Ende des zweiten Kapitels Modelle entwickelt, die die Betrachtung mehrerer Bevölkerungsgruppen zulassen. Zeitvariante Parameter werden durch die Verwendung geschalteter Systeme berücksichtigt. Bei der Untersuchung solcher Systeme ist derjenige Zustand von besonderem Interesse, bei dem innerhalb der Bevölkerung keine Infizierten auftreten, die gesamte Bevölkerung also von der betrachteten Krankheit frei bleibt. Es stellt sich die Frage, unter welchen Bedingungen sich dieser Zustand nach einer Infizierung der Bevölkerung im Laufe der Zeit von selbst einstellt. Mathematisch gesehen untersucht man die triviale Ruhelage des Systems, bei der keine Infizierten existieren, auf Stabilität. Für die Stabilitätsanalyse sind einige mathematische Begriffe und Aussagen notwendig, die im zweiten Kapitel bereitgestellt werden. Grundlegend ist die Theorie gewöhnlicher Differentialgleichungen, einschließlich der Stabilitätstheorie von Lyapunov. Darüberhinaus kommen wichtige Erkenntnisse aus den Gebieten Konvexe und Nichtglatte Analysis, Positive Systeme und Differentialinklusionen. Ausgestattet mit diesen Hilfsmitteln werden im vierten Kapitel Sätze bewiesen, die hinreichende Bedingungen dafür angegeben, dass die triviale Ruhelage in geschalteten SIS, SIR und SIRS Systemen asymptotisch stabil ist. KW - epidemiology KW - switched systems KW - ordinary differential equations KW - stability analysis KW - Epidemiologie KW - Geschaltete Systeme KW - Gewöhnliche Differentialgleichungen KW - Stabilitätsanalyse KW - Gewöhnliche Differentialgleichung KW - Stabilität KW - Epidemiologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108573 ER -