TY - JOUR A1 - Drescher, Nora A1 - Klein, Alexandra-Maria A1 - Schmitt, Thomas A1 - Leonhardt, Sara Diana T1 - A clue on bee glue: New insight into the sources and factors driving resin intake in honeybees (Apis mellifera) JF - PLoS ONE N2 - Honeybees (Apis mellifera) are threatened by numerous pathogens and parasites. To prevent infections they apply cooperative behavioral defenses, such as allo-grooming and hygiene, or they use antimicrobial plant resin. Resin is a chemically complex and highly variable mixture of many bioactive compounds. Bees collect the sticky material from different plant species and use it for nest construction and protection. Despite its importance for colony health, comparatively little is known about the precise origins and variability in resin spectra collected by honeybees. To identify the botanical resin sources of A. mellifera in Western Europe we chemically compared resin loads of individual foragers and tree resins. We further examined the resin intake of 25 colonies from five different apiaries to assess the effect of location on variation in the spectra of collected resin. Across all colonies and apiaries, seven distinct resin types were categorized according to their color and chemical composition. Matches between bee-collected resin and tree resin indicated that bees used poplar (Populus balsamifera, P. x canadensis), birch (Betula alba), horse chestnut (Aesculus hippocastanum) and coniferous trees (either Picea abies or Pinus sylvestris) as resin sources. Our data reveal that honeybees collect a comparatively broad and variable spectrum of resin sources, thus assuring protection against a variety of antagonists sensitive to different resins and/or compounds. We further unravel distinct preferences for specific resins and resin chemotypes, indicating that honeybees selectively search for bioactive resin compounds. KW - Honey bees KW - Poplars KW - Trees KW - Forests KW - Chemical composition KW - Bees KW - Conifers KW - Phenols Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200935 VL - 14 IS - 2 ER - TY - JOUR A1 - Rödel, Mark-Oliver A1 - Brede, Christian A1 - Hirschfeld, Mareike A1 - Schmitt, Thomas A1 - Favreau, Philippe A1 - Stöcklin, Reto A1 - Wunder, Cora A1 - Mebs, Dietrich T1 - Chemical Camouflage - A Frog's Strategy to Co-Exist with Aggressive Ants JF - PLOS ONE N2 - Whereas interspecific associations receive considerable attention in evolutionary, behavioural and ecological literature, the proximate bases for these associations are usually unknown. This in particular applies to associations between vertebrates with invertebrates. The West-African savanna frog Phrynomantis microps lives in the underground nest of ponerine ants (Paltothyreus tarsatus). The ants usually react highly aggressively when disturbed by fiercely stinging, but the frog is not attacked and lives unharmed among the ants. Herein we examined the proximate mechanisms for this unusual association. Experiments with termites and mealworms covered with the skin secretion of the frog revealed that specific chemical compounds seem to prevent the ants from stinging. By HPLC-fractionation of an aqueous solution of the frogs' skin secretion, two peptides of 1,029 and 1,143 Da were isolated and found to inhibit the aggressive behaviour of the ants. By de novo sequencing using tandem mass spectrometry, the amino acid sequence of both peptides consisting of a chain of 9 and 11 residues, respectively, was elucidated. Both peptides were synthesized and tested, and exhibited the same inhibitory properties as the original frog secretions. These novel peptides most likely act as an appeasement allomone and may serve as models for taming insect aggression. KW - amphibian skin secretions KW - antimicrobial peptides KW - paltothyreus tarsatus KW - dendrobates pumilio KW - anurans KW - microhylidae KW - hymenoptera KW - formicidae KW - mutualisms KW - alkaloids Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128181 SN - 1932-6203 VL - 8 IS - 12 ER - TY - JOUR A1 - Menzel, Florian A1 - Blüthgen, Nico A1 - Tolasch, Till A1 - Conrad, Jürgen A1 - Beifuss, Uwe A1 - Beuerle, Till A1 - Schmitt, Thomas T1 - Crematoenones - a novel substance class exhibited by ants functions as appeasement signal JF - Frontiers in Zoology N2 - Background: Parasitic, commensalistic, and mutualistic guests in social insect colonies often circumvent their hosts' nestmate recognition system to be accepted. These tolerance strategies include chemical mimicry and chemical insignificance. While tolerance strategies have been studied intensively in social parasites, little is known about these mechanisms in non-parasitic interactions. Here, we describe a strategy used in a parabiotic association, i.e. two mutualistic ant species that regularly share a common nest although they have overlapping food niches. One of them, Crematogaster modiglianii, produces an array of cuticular compounds which represent a substance class undescribed in nature so far. They occur in high abundances, which suggests an important function in the ant's association with its partner Camponotus rufifemur. Results: We elucidated the structure of one of the main compounds from cuticular extracts using gas chromatography, mass spectrometry, chemical derivatizations and nuclear magnetic resonance spectroscopy (NMR). The compound consists of two fused six-membered rings with two alkyl groups, one of which carries a keto functionality. To our knowledge, this is the first report on the identification of this substance class in nature. We suggest naming the compound crematoenone. In behavioural assays, crematoenones reduced interspecific aggression. Camponotus showed less aggression to allospecific cuticular hydrocarbons when combined with crematoenones. Thus, they function as appeasement substances. However, although the crematoenone composition was highly colony-specific, interspecific recognition was mediated by cuticular hydrocarbons, and not by crematoenones. Conclusions: Crematenones enable Crematogaster to evade Camponotus aggression, and thus reduce potential costs from competition with Camponotus. Hence, they seem to be a key factor in the parabiosis, and help Crematogaster to gain a net benefit from the association and thus maintain a mutualistic association over evolutionary time. To our knowledge, putative appeasement substances have been reported only once so far, and never between non-parasitic species. Since most organisms associated with social insects need to overcome their nestmate recognition system, we hypothesize that appeasement substances might play an important role in the evolution and maintenance of other mutualistic associations as well, by allowing organisms to reduce costs from antagonistic behaviour of other species. KW - cuticular hydrocarbons KW - appeasement substance KW - bees KW - ecology KW - parasitism KW - alkyloctahydronaphthalene KW - usurpation KW - venom KW - pheromone KW - crematogaster KW - parabiotic ants KW - Dufours gland KW - polyergus rufescens KW - formicidae KW - interspecific aggression KW - nestmate recognition cues KW - parabiotic association Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122595 SN - 1742-9994 VL - 10 IS - 32 ER - TY - JOUR A1 - Mayr, Antonia V. A1 - Keller, Alexander A1 - Peters, Marcell K. A1 - Grimmer, Gudrun A1 - Krischke, Beate A1 - Geyer, Mareen A1 - Schmitt, Thomas A1 - Steffan‐Dewenter, Ingolf T1 - Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient JF - Ecology and Evolution N2 - Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low‐quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro. KW - COI KW - cuticular chemistry KW - elevational gradient KW - Halictidae KW - microbiome metabarcoding KW - pollen metabarcoding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238853 VL - 11 IS - 12 SP - 7700 EP - 7712 ER - TY - JOUR A1 - Maihoff, Fabienne A1 - Sahler, Simone A1 - Schoger, Simon A1 - Brenzinger, Kristof A1 - Kallnik, Katharina A1 - Sauer, Nikki A1 - Bofinger, Lukas A1 - Schmitt, Thomas A1 - Nooten, Sabine S. A1 - Classen, Alice T1 - Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation JF - Frontiers in Ecology and Evolution N2 - Alpine bumble bees are the most important pollinators in temperate mountain ecosystems. Although they are used to encounter small-scale successions of very different climates in the mountains, many species respond sensitively to climatic changes, reflected in spatial range shifts and declining populations worldwide. Cuticular hydrocarbons (CHCs) mediate climate adaptation in some insects. However, whether they predict the elevational niche of bumble bees or their responses to climatic changes remains poorly understood. Here, we used three different approaches to study the role of bumble bees’ CHCs in the context of climate adaptation: using a 1,300 m elevational gradient, we first investigated whether the overall composition of CHCs, and two potentially climate-associated chemical traits (proportion of saturated components, mean chain length) on the cuticle of six bumble bee species were linked to the species’ elevational niches. We then analyzed intraspecific variation in CHCs of Bombus pascuorum along the elevational gradient and tested whether these traits respond to temperature. Finally, we used a field translocation experiment to test whether CHCs of Bombus lucorum workers change, when translocated from the foothill of a cool and wet mountain region to (a) higher elevations, and (b) a warm and dry region. Overall, the six species showed distinctive, species-specific CHC profiles. We found inter- and intraspecific variation in the composition of CHCs and in chemical traits along the elevational gradient, but no link to the elevational distribution of species and individuals. According to our expectations, bumble bees translocated to a warm and dry region tended to express longer CHC chains than bumble bees translocated to cool and wet foothills, which could reflect an acclimatization to regional climate. However, chain lengths did not further decrease systematically along the elevational gradient, suggesting that other factors than temperature also shape chain lengths in CHC profiles. We conclude that in alpine bumble bees, CHC profiles and traits respond at best secondarily to the climate conditions tested in this study. While the functional role of species-specific CHC profiles in bumble bees remains elusive, limited plasticity in this trait could restrict species’ ability to adapt to climatic changes. KW - pollinators KW - altitudinal gradient KW - cuticular hydrocarbon KW - desiccation KW - mountain KW - global change KW - translocation experiment KW - drought stress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304420 SN - 2296-701X VL - 11 ER - TY - JOUR A1 - Moris, Victoria C. A1 - Christmann, Katharina A1 - Wirtgen, Aline A1 - Belokobylskij, Sergey A. A1 - Berg, Alexander A1 - Liebig, Wolf-Harald A1 - Soon, Villu A1 - Baur, Hannes A1 - Schmitt, Thomas A1 - Niehuis, Oliver T1 - Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes JF - Chemoecology N2 - The mason wasp Odynerus spinipes shows an exceptional case of intrasexual cuticular hydrocarbon (CHC) profile dimorphism. Females of this species display one of two CHC profiles (chemotypes) that differ qualitatively and quantitatively from each other. The ratio of the two chemotypes was previously shown to be close to 1:1 at three sites in Southern Germany, which might not be representative given the Palearctic distribution of the species. To infer the frequency of the two chemotypes across the entire distributional range of the species, we analyzed with GC–MS the CHC profile of 1042 dry-mounted specimens stored in private and museum collections. We complemented our sampling by including 324 samples collected and preserved specifically for studying their CHCs. We were capable of reliably identifying the chemotypes in 91% of dry-mounted samples, some of which collected almost 200 years ago. We found both chemotypes to occur in the Far East, the presumed glacial refuge of the species, and their frequency to differ considerably between sites and geographic regions. The geographic structure in the chemotype frequencies could be the result of differential selection regimes and/or different dispersal routes during the colonization of the Western Palearctic. The presented data pave the route for disentangling these factors by providing information where to geographically sample O. spinipes for population genetic analyses. They also form the much-needed basis for future studies aiming to understand the evolutionary and geographic origin as well as the genetics of the astounding CHC profile dimorphism that O. spinipes females exhibit. KW - cuticular hydrocarbons KW - chemotypes KW - dry-mounted samples KW - collections KW - distribution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-306999 SN - 0937-7409 SN - 1423-0445 VL - 31 IS - 5 ER - TY - JOUR A1 - Christopher D., Pull A1 - Ugelvig, Line V. A1 - Wiesenhofer, Florian A1 - Anna V., Grasse A1 - Tragust, Simon A1 - Schmitt, Thomas A1 - Brown, Mark JF A1 - Cremer, Sylvia T1 - Destructive disinfection of infected brood prevents systemic disease spread in ant colonies JF - eLIFE N2 - In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogens non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation. KW - division of labor KW - Fungal cell-walls KW - Leaf cutting ants KW - Metarhizium anisopliae KW - Beauveria bassiana Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223728 VL - 7 ER - TY - JOUR A1 - Buellesbach, Jan A1 - Vetter, Sebastian G. A1 - Schmitt, Thomas T1 - Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps JF - Frontiers in Zoology N2 - Background Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sex-specific cues in the chemical communication systems of a wide variety of insects. However, whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con- over heterospecific mating partners is rarely assessed. We conducted behavioral assays in three representative species of parasitoid wasps (Hymenoptera: Pteromalidae) to determine their reliance on CHC as species-specific sexual signaling cues. Results We found a surprising degree of either unspecific or insufficient sexual signaling when CHC are singled out as recognition cues. Most strikingly, the cosmopolitan species Nasonia vitripennis, expected to experience enhanced selection pressure to discriminate against other co-occurring parasitoids, did not discriminate against CHC of a partially sympatric species from another genus, Trichomalopsis sarcophagae. Focusing on the latter species, in turn, it became apparent that CHC are even insufficient as the sole cue triggering conspecific sexual behavior, hinting at the requirement of additional, synergistic sexual cues particularly important in this species. Finally, in the phylogenetically and chemically most divergent species Muscidifurax uniraptor, we intriguingly found both CHC-based sexual signaling as well as species discrimination behavior intact although this species is naturally parthenogenetic with sexual reproduction only occurring under laboratory conditions. Conclusions Our findings implicate a discrepancy in the reliance on and specificity of CHC as sexual cues in our tested parasitioid wasps. CHC profiles were not sufficient for unambiguous discrimination and preference behavior, as demonstrated by clear cross-attraction between some of our tested wasp genera. Moreover, we could show that only in T. sarcophagae, additional behavioral cues need to be present for triggering natural mating behavior, hinting at an interesting shift in signaling hierarchy in this particular species. This demonstrates the importance of integrating multiple, potentially complementary signaling modalities in future studies for a better understanding of their individual contributions to natural sexual communication behavior. KW - chemical communication KW - assortative mating KW - mate recognition KW - prezygotic reproductive isolation KW - speciation KW - Nasonia KW - Trichomalopsis KW - Muscidifurax KW - Pteromalidae KW - Hymenoptera Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221702 VL - 15 ER - TY - JOUR A1 - Sprenger, Philipp P. A1 - Müsse, Christian A1 - Hartke, Juliane A1 - Feldmeyer, Barbara A1 - Schmitt, Thomas A1 - Gebauer, Gerhard A1 - Menzel, Florian T1 - Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant‐ant association JF - Ecological Entomology N2 - 1. The potential for competition is highest among species in close association. Despite net benefits for both parties, mutualisms can involve costs, including food competition. This might be true for the two neotropical ants Camponotus femoratus and Crematogaster levior, which share the same nest in a presumably mutualistic association (parabiosis). 2. While each nest involves one Crematogaster and one Camponotus partner, both taxa were recently found to comprise two cryptic species that show no partner preferences and seem ecologically similar. Since these cryptic species often occur in close sympatry, they might need to partition their niches to avoid competitive exclusion. 3. Here, we investigated first, is there interference competition between parabiotic Camponotus and Crematogaster, and do they prefer different food sources under competition? And second, is there trophic niche partitioning between the cryptic species of either genus? 4. Using cafeteria experiments, neutral lipid fatty acid and stable isotope analyses, we found evidence for interference competition, but also trophic niche partitioning between Camponotus and Crematogaster. Both preferred protein‐ and carbohydrate‐rich baits, but at protein‐rich baits Ca. femoratus displaced Cr. levior over time, suggesting a potential discovery‐dominance trade‐off between parabiotic partners. Only limited evidence was found for trophic differentiation between the cryptic species of each genus. 5. Although we cannot exclude differentiation in other niche dimensions, we argue that neutral dynamics might mediate the coexistence of cryptic species. This model system is highly suitable for further studies of the maintenance of species diversity and the role of mutualisms in promoting species coexistence. KW - Cryptic species KW - Formicidae KW - neutral theory KW - niche partitioning KW - nutrition KW - parabiosis KW - species coexistence mechanism KW - trade‐offs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228215 VL - 46 IS - 3 SP - 562 EP - 572 ER - TY - JOUR A1 - Otieno, Mark A1 - Karpati, Zsolt A1 - Peters, Marcell K. A1 - Duque, Laura A1 - Schmitt, Thomas A1 - Steffan-Dewenter, Ingolf T1 - Elevated ozone and carbon dioxide affects the composition of volatile organic compounds emitted by Vicia faba (L.) and visitation by European orchard bee (Osmia cornuta) JF - PLoS One N2 - Recent studies link increased ozone (O\(_3\)) and carbon dioxide (CO\(_2\)) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O\(_3\) and CO\(_2\) individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O\(_3\) alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO\(_2\) alone did not differ from the control. Furthermore, as with O\(_3\) alone, the mixture of O\(_3\) and CO\(_2\) also had a significant difference in the VOCs’ profile. O\(_3\) exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO\(_2\) level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O\(_3\) and CO\(_2\) on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions. KW - Volatile Organic Compound (VOC) KW - Vicia faba (L.) KW - European orchard bee (Osmia cornuta) KW - carbon dioxide (CO2) KW - ozone (O3) KW - bees KW - flowering plants KW - plant-insect interactions KW - flowers KW - plant physiology KW - plant-herbivore interactions Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350020 VL - 18 IS - 4 ER -