TY - THES A1 - Harder, Tristan H. T1 - Topological Modes and Flatbands in Microcavity Exciton-Polariton Lattices T1 - Topologische Moden und Flachbänder in Mikrokavitäts-Exziton-Polariton-Gittern N2 - The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination of advanced technological control over both the III-V semiconductor material platform as well as the precise spectroscopic access to polaritonic states, which provide access to the investigation of open questions and complex phenomena due to the inherent nonlinearity and direct spectroscopic observables such as energy-resolved real and Fourier space information, pseudospin and coherence. The focus of this work was to advance the research area of polariton lattice simulators with a particular emphasis on their lasing properties. Following the brief introduction into the fundamental physics of polariton lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier spectroscopy techniques used to investigate various features of these lattices were summarized in chapter 3. Here, the implementation of a spatial light modulator for advanced excitation schemes was presented. At the foundation of this work is the capability to confine polaritons into micropillars or microtraps resulting in discrete energy levels. By arranging these pillars or traps into various lattice geometries and ensuring coupling between neighbouring sites, polaritonic band structures were engineered. In chapter 4, the formation of a band structure was visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition of the discrete energy levels of a single chain of microtraps to the fully developed band structure of a honeycomb lattice was observed. This study allows to design the size of individual domains in more complicated lattice geometries such that a description using band structures becomes feasible, as it revealed that a width of just six unit cells is sufficient to reproduce all characteristic features of the S band of a honeycomb lattice. In particular in the context of potential technological applications in the realms of lasing, the laser-like, coherent emission from polariton microcavities that can be achieved through the excitation of polariton condensates is intriguing. The condensation process is significantly altered in a lattice potential environment when compared to a planar microcavity. Therefore, an investigation of the polariton condensation process in a lattice with respect to the characteristics of the excitation laser, the exciton-photon detuning as well as the reduced trap distance that represents a key design parameter for polaritonic lattices was performed. Based on the demonstration of polariton condensation into multiple bands, the preferred condensation into a desired band was achieved by selecting the appropriate detuning. Additionally, a decreased condensation threshold in confined systems compared to a planar microcavity was revealed. In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice geometries, such as the Lieb and Kagome lattices, on polaritons and polariton condensates was investigated. Deviations from a lattice simulator described by a tight binding model that is solely based on nearest neighbour coupling cause a remaining dispersiveness of the flatbands along certain directions of the Brillouin zone. Therefore, the influence of the reduced trap distance on the dispersiveness of the flatbands was investigated and precise technological control over the flatbands was demonstrated. As next-nearest neighbour coupling is reduced drastically by increasing the distance between the corresponding traps, increasing the reduced trap distance enables to tune the S flatbands of both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth on the order of the polariton linewidth. Additionally to technological control over the band structures, the controlled excitation of large condensates, single compact localized state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flatband were demonstrated. Furthermore, selective condensation into flatbands was realised. This combination of technological and spectroscopic control illustrates the capabilities of polariton lattice simulators and was used to study the coherence of flatband polariton condensates. Here, the ability to tune the dispersiveness from a dispersive band to an almost perfect flatband in combination with the selectivity of the excitation is particularly valuable. By exciting large flatband condensates, the increasing degree of localisation to a CLS with decreasing dispersiveness was demonstrated by measurements of first order spatial coherence. Furthermore, the first order temporal coherence of CLS condensates was increased from τ = 68 ps for a dispersive flatband, a value typically achieved in high-quality microcavity samples, to a remarkable τ = 459 ps in a flatband with a dispersiveness below the polarion linewidth. Corresponding to this drastic increase of the first order coherence time, a decrease of the second order temporal coherence function from g(2)(τ =0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emission, polariton condensates can form vortex lattices. In this work, two distinct vortex lattices that can form in polariton condensates in Kagome flatbands were revealed. Furthermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry through a localised excitation spot. This chirality was related to a change in the vortex orientation at the edge of the lattice and thus opens the path towards further investigations of symmetry breaking and chiral superfluid transport in Kagome lattices. Arguably the most influential concept in solid-state physics of the recent decades is the idea of topological order that has also provided a new degree of freedom to control the propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial band structures with polaritons, polariton condensates and lasing was emphasised. Firstly, a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice was realised. Here, a topologically non-trivial band gap was opened at the Dirac points through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of the excitonic mode. While the band gap is too small compared to the linewidth to be observed in the linear regime, the excitation of polariton condensates allowed to observe the characteristic, topologically protected, chiral edge modes that are robust against scattering at defects as well as lattice corners. This result represents a valuable step towards the investigation of non-linear and non-Hermitian topological physics, based on the inherent gain and loss of microcavities as well as the ability of polaritons to interact with each other. Apart from fundamental interest, the field of topological photonics is driven by the search of potential technological applications, where one direction is to advance the development of lasers. In this work, the starting point towards studying topological lasing was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood geometry with a large topological gap. The coherence properties of the topological edge defect of an SSH chain was studied in detail, revealing a promising degree of second order temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d = 3.5 µm. In the context of topological lasing, the idea of using a propagating, topologically protected mode to ensure coherent coupling of laser arrays is particularly promising. Here, a topologically non-trivial interface mode between the two distinct domains of the crystalline topological insulator (CTI) was realised. After establishing selective lasing from this mode, the coherence properties were studied and coherence of a full, hexagonal interface comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated. This result thus represents the first demonstration of a topological insulator VCSEL array, combining the compact size and convenient light collection of vertically emitting lasers with an in-plane topological protection. Finally, in chapter 7, an approach towards engineering the band structures of Lieb and honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was presented. For Lieb lattices, this technique opens up a path towards controlling the coupling of a flatband to dispersive bands and could enable a detailed study of the influence of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice, a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb domains with permuted sites in the unit cells was demonstrated. This boundary mode could serve as the foundation for the realisation of a polariton quantum valley Hall effect with a truly topologically protected spin based on vortex charges. Modifying polariton lattices by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified as an additional, promising path for the future development of polariton lattice simulators. N2 - Die Faszination von Exziton-Polaritonen (Polaritonen) basiert auf der einzigartigen Kombination aus technologischer Kontrolle über die III-V Halbleiterplattform und umfassendem spektroskopischen Zugang zu polaritonischen Zuständen, die aufgrund ihrer inhärenten Nichtlinearität und vielfältigen Observablen, wie zum Beispiel Real- und Fourierraumspektren, Pseudospin und Kohärenz, Zugang zu diversen offenen Fragen und komplexen physikalischen Phänomenen bieten. Im Fokus dieser Arbeit lag die Weiterentwicklung von Polaritongittern als Simulatoren für diverse physikalische Phänomene. Dabei wurde insbesondere die das kohärente, Laser-artige Licht, das von Polaritonkondensaten ausgesendet wird, untersucht. Die Arbeit beginnt mit einer kurzen Zusammenfassung der für das Verständnis relevanten physikalischen Grundlagen in Kapitel 2, gefolgt von einer Beschreibung der Probenherstellung sowie der spektroskopischen Methoden, die für die Untersuchung der polaritonischen Gitter verwendet wurden, in Kapitel 3. Hier wurde insbesondere die Implementierung eines Spatial Light Modulators für die Erzeugung beliebig definierbarer Anregungsmuster präsentiert. Diese Arbeit basiert auf der Fähigkeit, Einschlusspotentiale in Form von Mikrotürmchen oder Mikrofallen für Polaritonen zu erzeugen, die zu einem diskretisierten Modenspektrum führen. Wird nun ein Gitter aus solchen Türmchen oder Fallen hergestellt, führt die Kopplung zwischen benachbarten Gitterpositionen zur Ausbildung von Bandstrukturen. Die Ausbildung einer solchen Bandstruktur wurde in Kapitel 4 anhand von Streifen eines Honigwabengitters veranschaulicht. Dabei konnte der Übergang vom diskreten Energiespektrum einer eindimensionalen Kette bis hin zur vollständig ausgebildeten Bandstruktur eines Honigwabengitters dargestellt werden. Diese systematische Untersuchung ermöglicht das gezielte Design neuer, komplizierterer Gittergeometrien, die aus verschiedenen Domänen bestehen, da gezeigt werden konnte, dass eine Domänengröße von sechs Einheitszellen ausreicht, um eine Bandstruktur zu erzeugen. Neben der Ausbildung von Bandstrukturen in Gittern ist das Phänomen der Polaritonkondensation, das zur Emission von kohärenter Strahlung führt, besonders spannend, da es in direktem Bezug zu möglichen technologischen Anwendungen als Laser steht. Da sich der Kondensationsprozess in einem Gitter grundsätzlich vom Kondensationsprozess in einer planaren Kavität unterscheidet, wurde dieser detailliert untersucht. Hierbei wurde insbesondere der Einfluss des Anregungslasers, der Verstimmung zwischen Exziton und Photon, sowie des reduzierten Fallenabstandes, der einen wichtigen Parameter im Design neuer Gitter darstellt, untersucht. Im Rahmen dieser Untersuchung konnte die Polaritonkondensation in mehrere Bänder nachgewiesen werden. Außerdem wurde selektive Kondensation in ein gewünschtes Band durch die Wahl einer geeigneten Verstimmung zwischen Exziton und Photon erreicht. Abschließend konnte eine Verringerung der Kondensationsschwelle in einem Gitter gegenüber einer planaren Kavität nachgewiesen werden. Ein bemerkenswertes Phänomen, das zum Beispiel in den Bandstrukturen von Lieb- und Kagomegittern auftritt, sind Flachbänder, deren Einfluss auf Polaritonen und Polaritonkondensate, insbesondere in Bezug zu ihren Kohärenzeigenschaften, in Kapitel 5 untersucht wurde. Abweichungen von einem Gittersimulator, der sich mit einem Tight Binding Modell, das nur Kopplung zwischen nächsten Nachbarn berücksichtigt, beschreiben lässt, führen dazu, dass Flachbänder entlang bestimmter Richtungen in der Brillouinzone dispersiv werden. Mit einer Untersuchung des Einflusses des reduzierten Fallenabstandes auf Flachbänder konnte technologische Kontrolle über diese Dispersivität gezeigt werden. Da die Kopplung zwischen übernächsten Nachbarn mit steigendem Abstand zwischen den Fallen stark abnimmt, lassen sich die Flachbänder in den S Bändern von Lieb und Kagomegittern von dispersiven in nahezu perfekte Flachbänder, deren Bandbreite in der Größenordnung der polaritonischen Linienbreite liegt, überführen, indem der reduzierte Fallenabstand vergrößert wird. Zusätzlich zur technologischen Kontrolle über die Dispersivität der Flachbänder wurde die kontrollierte Anregung von großen Flachbandkondensaten, Kondensaten in einzelnen Compact Localised States (CLS), sowie die resonante Anregung von Polaritonen in einem Lieb Flachband demonstriert. Insbesondere für das Flachband des Kagomegitters konnte selektive Kondensation realisiert werden. Diese Kombination aus technologischer und spektroskopischer Kontrolle verdeutlicht das Potential polaritonischer Gittersimulatoren. Aufbauend auf der Kontrolle über polaritonische Flachbänder wurde die Kohärenz von Flachbandkondensaten untersucht. In diesem Zusammenhang erwies sich die Kombination aus der Möglichkeit, die Dispersivität des Flachbandes zu beeinflussen, und der selektiven Kondensation als besonders wertvoll. Durch interferometrische Messungen an großen Flachbandkondensaten konnte gezeigt werden, dass sich die Kohärenz mit abnehmender Dispersivität des Flachbandes auf einen CLS lokalisiert. Außerdem konnte eine Steigerung der Kohärenzzeit von τ = 68 ps, einem für hochwertige Mikrokavitäten typischen Wert, in einem dispersiven Flachband zu beeindruckenden τ = 459 ps in einem Flachband, dessen Dispersivität kleiner als die polaritonische Linienbreite ist, gezeigt werden. Passend zu dieser deutlichen Steigerung der Kohärenzzeit erster Ordnung konnte eine Abnahme der Kohärenzfunktion zweiter Ordnung von g(2)(τ =0) = 1.062 zu g(2)(0) = 1.035 beobachtet werden. Neben den mit einem Laser vergleichbaren Emissionseigenschaften können Polaritonkondensate Gitter aus Vortices ausbilden. Im Rahmen dieser Arbeit wurden zwei verschiedene Vortexgitter nachgewiesen. Außerdem konnte durch Symmetriebrechung mittels eines lokalisierten Anregungslasers chiraler, superfluider Randtransport realisiert werden. Diese Chiralität konnte mit einer Änderung der Vortexausrichtung am Rand des Gitters in Verbindung gebracht werden und motiviert daher weitere Untersuchungen zu Symmetriebrechung und chiralem, superfluidem Transport in Kagomegittern. Das vermutlich einflussreichste Konzept in der Festkörperphysik der letzten Jahrzehnte ist die Idee einer topologischen Ordnung, die auch einen neuen Freiheitsgrad zur Kontrolle der Propagation von Licht bietet. Daher wurde in Kapitel 6 das Zusammenspiel aus topologisch nicht-trivialen Bandstrukturen und Polaritonen, Polarionkondensaten und Lasern untersucht. Zuerst wurde ein zweidimensionaler, polaritonischer, topologischer Isolator, der auf einem Honigwabengitter basiert, realisiert. Die topologisch nicht-triviale Bandlücke wurde durch eine Kombination aus einer Modenaufspaltung zwischen der transversal-elektrischen und der transversal-magnetischen Komponente der photonischen Mode sowie einer Zeeman-Aufspaltung der exzitonischen Mode geöffnet. Da die Bandlücke zu klein gegenüber der Linienbreite war, um sie im linearen Regime nachweisen zu können, wurden Polaritonkondensate angeregt. Mithilfe dieser Kondensate war es möglich, die charakteristischen, topologisch geschützten, chiralen Randmoden, die robust gegenüber Rückstreuung und Streuung an Defekten sowie den Ecken des Gitters sind, nachzuweisen. Dieses Ergebnis stellt einen wichtigen Schritt in der Untersuchung nicht-linearer und nichthermitischer, topologischer Systeme dar, da Mikrokavitäten eine intrinsische Nichtlinearität aufweisen und Polaritonen untereinander wechselwirken können. Neben dem fundamentalen Interesse wird das Feld der topologischen Photonik vor allem durch die Suche nach neuen technologischen Anwendungen vorangetrieben. Eine wichtige Forschungsrichtung ist dabei die Entwicklung neuer Laser. In dieser Arbeit war der Ausgangspunkt für die Untersuchung topologischer Laser das Su-Schrieffer-Heeger (SSH) Modell, da es eine einfache, gut verstandene Geometrie und eine große topologische Bandlücke bietet. Die Kohärenzeigenschaften des topologischen Randdefekts in SSH Ketten wurden detailliert untersucht und ein Grad zeitlicher Kohärenz zweiter Ordnung von g(2)(0) = 1.07 erreicht. Für einen Mikrolaser mit einem Durchmesser von nur d = 3.5 µm ist dies ein sehr gutes Ergebnis. Besonders vielversprechend in der Entwicklung topologischer Laser ist allerdings vor allem die kohärente Kopplung vieler Laser mithilfe einer propagierenden, topologisch geschützten Mode. Um diese Kopplung zu untersuchen wurde eine topologisch nichttriviale Mode an der Domänengrenze zwischen zwei kristallinen, topologischen Isolatoren implementiert. Nachdem selektive Laseremission aus dieser Mode erreicht wurde, wurden insbesondere die Kohärenzeigenschaften untersucht. Dabei konnte gezeigt werden, dass 30 vertikal emittierende Laser, die eine geschlossene, hexagonale Domänengrenze bilden, kohärent gekoppelt werden können. Dieser erste Nachweis eines topologisch geschützten Gitters aus gekoppelten, vertikal emittieren Lasern überzeugt vor allem durch die Kombination der kompakten Bauform und einfachen Bündelung der Laseremission vertikal emittierenden Laser mit dem topologischen Schutz der zwischen den Lasern propagierenden Mode. Zuletzt wurde in Kapitel 7 untersucht, wie die Bandstrukturen von Lieb- und Honigwabengittern durch die Einführung eines Energieunterschiedes zwischen den Untergittern gezielt verändert werden können. In Liebgittern bietet diese Technologie einen Weg, die Kopplungsumgebung des Flachbandes drastisch zu ändern, da das Flachband nun nicht mehr einen Dirac-Punkt mit linearer Dispersion schneidet, sondern ein dispersives Band an einem Potentialminimum berührt. In Honigwabengittern konnte eine Quantum Valley Hall Mode an der Grenzfläche zwischen zwei Domänen mit invertiertem Untergitter gezeigt werden. Diese Mode könnte die Basis für die Entwicklung eines Quantum Valley Hall Zustandes mit echtem topologischem Schutz auf der Basis von Vortizes bilden. Eine Variation der Eigenenergien der Untergitter stellt also einen vielversprechenden, weiteren Weg für zukünftige Experimente mit polaritonischen Gittersimulatoren dar. KW - Exziton-Polariton KW - Topologie KW - Laser KW - Fourier-Spektroskopie KW - Topologische Laser KW - Gittersimulator Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259008 ER - TY - THES A1 - Seider, David T1 - Solving an eigenvalue problem in laser simulation T1 - Lösen eines Eigenwertproblems bei der Simulation von Lasern N2 - In this thesis a new and powerful approach for modeling laser cavity eigenmodes is presented. This approach is based on an eigenvalue problem for singularly perturbed partial differential operators with complex coefficients; such operators have not been investigated in detail until now. The eigenvalue problem is discretized by finite elements, and convergence of the approximate solution is proved by using an abstract convergence theory also developed in this dissertation. This theory for the convergence of an approximate solution of a (quadratic) eigenvalue problem, which particularly can be applied to a finite element discretization, is interesting on its own, since the ideas can conceivably be used to handle equations with a more complex nonlinearity. The discretized eigenvalue problem essentially is solved by preconditioned GMRES, where the preconditioner is constructed according to the underlying physics of the problem. The power and correctness of the new approach for computing laser cavity eigenmodes is clearly demonstrated by successfully simulating a variety of different cavity configurations. The thesis is organized as follows: Chapter 1 contains a short overview on solving the so-called Helmholtz equation with the help of finite elements. The main part of Chapter 2 is dedicated to the analysis of a one-dimensional model problem containing the main idea of a new model for laser cavity eigenmodes which is derived in detail in Chapter 3. Chapter 4 comprises a convergence theory for the approximate solution of quadratic eigenvalue problems. In Chapter 5, a stabilized finite element discretization of the new model is described and its convergence is proved by applying the theory of Chapter 4. Chapter 6 contains computational aspects of solving the resulting system of equations and, finally, Chapter 7 presents numerical results for various configurations, demonstrating the practical relevance of our new approach. N2 - In dieser Arbeit wird ein neues und mächtiges Verfahren für die Modellierung von Eigenmoden in Laser-Resonatoren vorgestellt. Dieses Verfahren basiert auf einem Eigenwertproblem für singulär gestörte Differentialoperatoren mit komplexen Koeffizienten; solche Operatoren sind bisher noch nicht detailliert untersucht worden. Das Eigenwertproblem wird mit Finiten Elementen diskretisiert, und die Konvergenz der Finite-Elemente-Lösung wird bewiesen durch Anwendung einer abstrakten Konvergenztheorie, die ebenfalls in dieser Dissertation entwickelt wird. Diese Theorie für die Konvergenz einer Näherungslösung eines (quadratischen) Eigenwertproblems ist für sich allein interessant, da die Beweisideen auch auf Fälle mit einer komplizierteren Nichtlinerität angewendet werden können. Das diskretisierte Eigenwertproblem wird im Wesentlichen mit einem vorkonditionierten GMRES-Verfahren gelöst, wobei der Vorkonditionierer unter Beachtung der dem Problem zugrunde liegenden Physik konstruiert wurde. Die Mächtigkeit und Korrektheit unseres neuen Verfahrens zur Bestimmung von Eigenmoden in Laser-Resonatoren wird klar gezeigt dadurch, dass eine Vielzahl verschiedener Konfigurationen damit erfolgreich gerechnet werden können. Die Dissertation ist wie folgt aufgebaut: Kapitel 1 enthält eine kurzen Überblick über das Lösen der sogenannten Helmholtz-Gleichung mit Hilfe von Finiten Elementen. Der Großteil des Kapitels 2 beschäftigt sich mit der Analyse eines eindimensionalen Modellproblems. Dieses Modellproblem enthält die Hauptidee des neuen Modells für Eigenmoden eines Laser-Resonators, welches in Kapitel 3 entwickelt wird. Kapitel 4 beinhaltet eine Konvergenztheorie für Näherungslösungen von quadratischen Eigenwertproblemen. In Kapitel 5 wird eine stabilisierte Finite-Elemente-Diskretisierung des neuen Modells beschrieben, und dessen Konvergenz mit Hilfe der Theorie aus Kapitel 4 bewiesen. Kapitel 6 beschäftigt sich damit, welche Verfahren aus der numerischen linearen Algebra verwendet werden, um das diskrete Problem zu lösen. Schließlich finden sich zum Nachweis der praktischen Relavanz des Verfahrens in Kapitel 7 numerische Ergebnisse für eine Vielzahl von Konfigurationen. KW - Laser KW - Simulation KW - Eigenwert KW - Lasersimulation KW - Eigenmode KW - singulär gestörtes Problem KW - Finite Elemente KW - Konvergenz bei quadratischem Eigenwertproblem KW - laser simulation KW - eigenmode KW - singularly perturbed problem KW - finite elements KW - convergence for quadratic eigenvalue problems Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10057 ER - TY - THES A1 - Mahnkopf, Sven T1 - Photonic crystal based widely tunable laser diodes and integrated optoelectronic components T1 - Weit abstimmbare Laserdioden und integrierte optoelektronische Bauelemente auf Basis photonischer Kristalle N2 - In a first aspect of this work, the development of photonic crystal based widely tunable laser diodes and their monolithic integration with photonic crystal based passive waveguide and coupler structures is explored theoretically and experimentally. In these devices, the photonic crystal is operated in the photonic bandgap which can be used for the realization of effective reflectors and waveguide structures. Such tunable light sources are of great interest for the development of optical network systems that are based on wavelength division multiplexing. In a second aspect of this work, the operation of a photonic crystal block near the photonic band edge is investigated with respect to the so-called superprism effect. After a few introductory remarks that serve to motivate this work, chapter 3 recapitulates some aspects of semiconductor lasers and photonic crystals that are essential for the understanding of this work so that the reader should be readily equipped with the tools to appreciate the results presented in this work. N2 - In einem ersten Aspekt der vorliegenden Arbeit wird die Entwicklung von weit abstimmbaren Halbleiterlasern auf der Basis photonischer Kristalle sowie deren monolithische Integration mit passiven, auf photonischen Kristallen basierenden Wellenleiter- und Kopplerstrukturen theoretisch und experimentell untersucht. In diesen Bauelementen werden die photonischen Kristalle im Bereich der photonischen Bandlücke betrieben, was zur Realisierung effektiver Reflektoren und Wellenleiterstrukturen ausgenutzt werden kann. Kompakte, weit abstimmbare Halbleiterlaser sind für die Entwicklung von optischen Netzwerksystemen, die auf dem wavelength division multiplexing (WDM) beruhen, von fundamentaler Bedeutung. In einem zweiten Aspekt der Arbeit wird der Betrieb von photonischen Kristallen im Bereich der photonischen Bandkante im Hinblick auf den sogenannten Superprisma-Effekt untersucht. Nach einigen einleitenden Worten, die diese Arbeit motivieren, werden in Kapitel 3 die für das Verständnis der Arbeit wesentlichen Grundlagen von Halbleiterlasern und photonischen Kristallen rekapituliert. KW - Laserdiode KW - Abstimmbarer Laser KW - Photonischer Kristall KW - Photonische Kristalle KW - Laser KW - Superprisma KW - Koppler KW - Photonic crystals KW - laser KW - superprism KW - coupler Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13860 ER - TY - THES A1 - Eyring, Stefan T1 - Extremely Nonlinear Optics with wavefront controlled ultra-short laser pulses T1 - Extrem nichtlineare Optik mit wellenfront-gesteuerten ultrakurzen Laserpulsen N2 - This work deals with nonlinear optics with wavefront controlled ultra-short laser pulses. The effects studied are self-phase modulation due to filamentation of ultra-short laser pulses and high-order harmonic generation in a jet of noble gas. Additionally, a way to optimize the spectral brilliance of the high-order harmonic source is studied by measuring the spectrum and wavefront of the generated XUV beam. N2 - Diese Arbeit beschäftigt sich mit nichtlinearer Optik mit wellenfront-gesteuerten ultrakurzen Laserpulsen. Die untersuchten nichtlinearen Effekte sind die Selbstphasenmodulation in einem Filament und die Erzeugung von hohen Harmonischen in einem Edelgasjet. Weiterhin wird eine Methode zur Optimierung der spektralen Brillanz der Hohen-Harmonischen Quelle untersucht. Die spektrale Brillanz wird mit Hilfe des Spektrums und der Wellenfront des erzeugten XUV-Strahls bestimmt. KW - Nichtlineare Optik KW - Ultrakurzer Lichtimpuls KW - Ultrakurze Laserpulse KW - Hohen-Harmonischen Erzeugung KW - Hartmannsensor KW - ultra-short laser pulses KW - nonlinear optics KW - high-order harmonic generation KW - wavefront KW - adaptive optics KW - Titan-Saphir-Laser KW - Laserverstaerker KW - Laser KW - Jena / Institut fuer Optik und Quantenelektronik Jena KW - Kohaerente Optik Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72351 ER - TY - THES A1 - Lohbreier, Jan T1 - Characterization and Optimization of High-order Harmonics after Adaptive Pulse Shaping T1 - Charakterisierung und Optimierung von Hohen Harmonischen nach adaptiver Pulsformung N2 - Die Arbeit beschäftigt sich mit der Umwandlung von ultrakurzen Laserpulsen in weiche Röntgenpulse. Dabei geht es hauptsächlich um die adaptive Pulsformung des Laserpulses und dessen Einfluss auf die generierte harmonische Strahlung N2 - This work deals with the conversion of ultrashort laser pulses into soft x-ray radiation. Mainly, the effect of adaptive pulse shaping on the generated high-order harmonic radiation is investigated KW - Titan-Saphir-Laser KW - YAG-Laser KW - Pumpen KW - Multimode-Laser KW - Laserverstärker KW - Laser KW - Lasertechnologie KW - Impulslaser KW - Frequenzverdopplung KW - Hohe Harmonisch Generation KW - adaptive Pulsformung KW - High-order Harmonic Generation KW - adaptive pulse shaping Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30474 ER - TY - THES A1 - Papastathopoulos, Evangelos T1 - Adaptive control of electronic excitation utilizing ultrafast laser pulses T1 - Adaptive Kontrolle elektronischer Anregung mitels Femtosekunden-Laserpulsen N2 - The subject of this work has been the investigation of dynamical processes that occur during and after the interaction of matter with pulses of femtosecond laser radiation. The experiments presented here were performed in the gas phase and involve one atomic and several model molecular systems. Absorption of femtosecond laser radiation by these systems induces an electronic excitation, and subsequently their ionization, photofragmentation or isomerization. The specific adjustment of the excitation laser field properties offers the possibility to manipulate the induced electronic excitation and to influence the formation of the associated photoproducts. From the perspective of the employed spectroscopic methods, the development of photoelectron spectroscopy and its implementation in laser control experiments has been of particular interest in this thesis. This technique allows for a most direct and intuitive observation of electronic excitation dynamics in atomic as well as in complex polyatomic molecular systems. The propagation of an intermediate electronic transient state, associated to the formation of a particular photoproduct, can be interrogated by means of its correlation to a specific state of the atomic or molecular continuum. Such correlations involve the autoionization of the transient state, or by means of a second probe laser field, a structural correlation, as summarized by the Koopman's theorem (section 2.4.1). The technique of adaptive femtosecond quantum control has been the subject of development in our group for many years. The basic method, by which the temporal profile of near-infrared laser pulses at a central wavelength of 800 nm, can be adjusted, is a programmable femtosecond pulse-shaper that comprises of a zero dispersion compressor and a commercial liquid crystal modulator (LCD). This experimental arrangement was realized prior to this thesis and served as a starting point to extend the pulse-shaping technique to the ultraviolet spectral region. This technological development was realized for the purposes of the experiments presented in Chapter 5. It involves a combination of the LCD-pulse-shaper with frequency up-conversion techniques on the basis of producing specifically modulated laser pulses of central wavelength 266 nm. Furthermore, the optical method X-FROG had to be developed in order to characterize the often complex structure of generated ultraviolet pulses. In the adaptive control experiments presented in this work, the generated femtosecond laser pulses could be automatically adjusted by means of specifically addressing the 128 independent voltage parameters of the programmable liquid-crystal modulator. Additionally a machine learning algorithm was employed for the cause of defining laser pulse-shapes that delivered the desired (optimal) outcome in the investigated laser interaction processes. In Chapter 4, the technique of feedback-controlled femtosecond pulse shaping was combined with time-of-flight mass spectroscopy as well as photoelectron spectroscopy in order to investigate the multiphoton double ionization of atomic calcium. A pronounced absolute enhancement of the double ionization yield was obtained with optimized femtosecond laser pulses. On the basis of the measured photoelectron spectra and of the electron optimization experiments, a non-sequential process was found, which plays an important role in the formation of doubly charged Calcium ions. Then in Chapter 5, the dynamics following the pp* excitation of ethylene-like molecules were investigated. In this context, the model molecule stilbene was studied by means of femtosecond photoelectron spectroscopy. Due to the simplicity of its chemical structure, stilebene is one of the most famous models used in experimental as well as theoretical studies of isomerization dynamics. From the time-resolved experiments described in that chapter, new spectroscopic data involving the second excited electronic state S2 of the molecule were acquired. The second ethylenic product was the molecule tetrakis (dimethylamino) ethylene (TDMAE). Due to the presence of numerous lone pair electrons on the four dimethylamino groups, TDMAE exhibits a much more complex structure than stilbene. Nevertheless, previously reported studies on the dynamics of TDMAE provided vital information for planning and conducting a successful optimisation control experiment of the wavepacket propagation upon the (pp*) S1 excited potential surface of the molecule. Finally, in Chapter 6 the possibility of employing femtosecond laser pulses as an alternative method for activating a metallocene molecular catalyst was addressed. By means of an adaptive laser control scheme, an optimization experiment was realized. There, the target was the selective cleavage of one methyl-ligand of the model catalyst (Cp)^2Zr(CH3)^2, which induces a catalytic coordination position on the molecule. The spectroscopic studies presented in that chapter were performed in collaboration to the company BASF A.G. and constitute a proof-of principle attempt for a commercial application of the adaptive femtosecond quantum control technique. N2 - Das Thema der hier vorgestellten Arbeit umfasst die Untersuchung von dynamischen Prozessen, die während der Wechselwirkung von Femtosekunden Laserpulsen mit Atomen und Molekülen stattfinden. Die entsprechenden Experimente sind in der Gasphase durchgeführt worden, wobei ein Atom- und mehrere Molekül-Modellsysteme untergesucht wurden. Die Absorption von Femtosekunden-Laserstrahlung induziert die elektronische Anregung der quantumsmechanischen Systeme und eventuell deren Ionisation, Photofragmentnation oder Isomerisierung. Die gezielte Einstellung der Laserfeldeigenschaften bietet die Möglichkeit, diese Prozesse zu beeinflussen, beziehungsweise die Formung von entsprechenden Photoprodukten zu steuern. Im Hinblick auf die verwendeten spektroskopischen Methoden wurde besonderes Interesse auf die Entwicklung von Photoelektronen-Spektroskopie und in deren Einsatz zur Durchführung von laserinduzierten Kontrollexperimente gelegt. Photoelektronen-Spektroskopie ermöglicht die direkte und intuitive Beobachtung elektronischer Anregungsdynamik in Atomen sowie in komplexen mehreratomaren Molekülsystemen. Die zeitliche Entwicklung von angeregten elektronischen Zuständen ist oft bei der Formung von bestimmten Photoprodukten assoziiert. Die Dynamik kann mittels der Korrelation des sich entwickelnden Zustandes zu den Kontinuumzuständen des Atom- oder Molekül-Systems untersucht werden. Das detektionsverfahren umfasst die Autoionization oder, mittels eines zweiten Laserpulses, die Weiteranregung des Systems ins Kontinuum. Denn, die Beobachtung der entsprechenden Strukturänderungen des Systems erfolgt mittels der Korrelation des zwischenangeregten Zustand zu den verschiedenen Kontinuumzuständen (Koopman Theorem). Seit mehreren Jahren wurde die Methode der adaptiven Femtosekunden-Pulsformung in unserer Gruppe entwickelt. Die anfängliche experimentelle Anordnung besteht aus einer Kombination von einem Flüssig-Kristall-Modulator (LCD) und einen Null-Dispersions-Kompressor. Damit ist es möglich, das zeitliche Profil von Laserpulsen im Infrarot (800 nm) Spektralbereich automatisch zu modulieren. Diese Entwicklungsarbeit stand bereits zu Verfügung vor dem Anfang der vorgestellten Dissertation. Hier wurde die Erweiterung dieser Methode in den uravioletten Spektralbereich vorgestellt (Kapitel 5). Es umfasst eine Kombination von dem bestehenden LCD-Pulsformer und einem Verfahren zur Frequenzkonversion, das die Erzeugung von modulierten aserpulsen mit eine Wellenlänge 266 nm ermöglicht. Die entsprechende Charakterisierungsmethoden (X-FROG) wurden ebenfalls entwickelt. Die Femtosekunden-Laserpulse können automatisch moduliert werden durch die entsprechende Einstellung der 128 unabhängigen Spannungsparametern des LCD-Modulators. Zusätzlich wurden die optimale Parameter für die Kontrolle eines bestimmten anregungsprozess mittels eines Machine-Learning Algorithmus gefunden. In Kapitel 4 wurde die Mehrphoton-Doppleionization von Calciumatomen untersucht. Dabei wurde die Methode der adaptiven Pulsformung zusammen mit time-of-flight Massenspektroskopie und Photoelektronenspektroskopie ingesetzt. Das absolute Signal der Doppleionization konnte verdoppelt werden durch die Anregung mit bestimmten komplexen Pulsformen. Gerade bei den Optimierungexperimenten an photoelektronenspektra konnte ein „non-sequential" Prozess entdeckt werden, der eine wichtige Rolle bei der Doppleionization von Calcium spielt. In Kapitel 5 wurde die Dynamik von pp* Anregungsprozessen von Ethylenähnlichen-Moleküle untersucht. Im diesen Zusammenhang wurde das Modelmolekül Stilbene mittels Photoelektronenspektroskopie weiteruntersucht. Wegen seiner einfachen Struktur ist Stilbene eines der meistbenutzten Moleküle für Untersuchungen zur Photoisomerisierungsdynamik. Gerade bei den hier dargestellten zeitaufgelüsten Messungen wurde neu spektroskopische Information über den zweiten angeregten elektronische Zustand S2 entdeckt. Das zweite untersuchte Molekül ist Tetrakis Dimethylamino) Ethylen (TDMAE). Wegen den zahlreichen „Lone-Pair" Elektronen an seinen Dimethylamino Gruppen ist die gesamte Struktur des Moleküls deutlich komplexer im Vergleich zu Stilbene. Allerdings, ausgehend von gegebenen spektroskopischen Informationen aus der Literatur konnte ein erfolgreiches Kontrollexperiment an der Wellenpackets-Propagation des pp* Anregungsprozesses (auf dem S1 Zustand) geplant und durchgeführt werden. In Kapitel 6 wurde schließlich die Möglichkeit erforscht, einen Metallocene-Katalysator mittels Femtosekunden-Laserpulsen zu aktivieren. Das Kotrollschema der adaptiven Pulsformung wurde dabei eingesetzt, um eine der zwei identischen Methylgruppen des Moleküls selektiv abzuspalten, was zur Aktivierung des Katalysators führt. Diese spektroskopische Untersuchung wurde in Kollaboration mit der Firma BASF A.G. durchgeführt. Es stellt einen Grundlagenversuch der industriellen Anwendung der adaptiven Quantumskontrollemethode dar. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Molekulardynamik KW - Photochemische Reaktion KW - Regelung KW - Laser KW - Femtosekundendynamik KW - Photofragmentation KW - Isomerizierung KW - Ionization KW - Laser KW - Femtosecond dynamics KW - Photofragmentation KW - Isomerization KW - Ionization Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12533 ER -