TY - JOUR A1 - Dietl, Sebastian A1 - Schwinn, Stefanie A1 - Dietl, Susanne A1 - Riedl, Simone A1 - Deinlein, Frank A1 - Rutkowski, Stefan A1 - von Bueren, Andre O. A1 - Krauss, Jürgen A1 - Schweitzer, Tilmann A1 - Vince, Giles H. A1 - Picard, Daniel A1 - Eyrich, Matthias A1 - Rosenwald, Andreas A1 - Ramaswamy, Vijay A1 - Taylor, Michael D. A1 - Remke, Marc A1 - Monoranu, Camelia M. A1 - Beilhack, Andreas A1 - Schlegel, Paul G. A1 - Wölfl, Matthias T1 - MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties JF - BMC Cancer N2 - Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma. KW - cancer stem cells KW - anaplastic medulloblastoma KW - group 3 KW - orthotopic xenograft KW - animal model KW - brain tumor KW - children Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145877 VL - 16 IS - 115 ER - TY - JOUR A1 - Zlamy, Manuela A1 - Almanzar, Giovanni A1 - Parson, Walther A1 - Schmidt, Christian A1 - Leierer, Johannes A1 - Weinberger, Birgit A1 - Jeller, Verena A1 - Unsinn, Karin A1 - Eyrich, Matthias A1 - Würzner, Reinhard A1 - Prelog, Martina T1 - Efforts of the human immune system to maintain the peripheral CD8+ T cell compartment after childhood thymectomy JF - Immunity & Ageing N2 - Background Homeostatic mechanisms to maintain the T cell compartment diversity indicate an ongoing process of thymic activity and peripheral T cell renewal during human life. These processes are expected to be accelerated after childhood thymectomy and by the influence of cytomegalovirus (CMV) inducing a prematurely aged immune system. The study aimed to investigate proportional changes and replicative history of CD8+ T cells, of recent thymic emigrants (RTEs) and CD103+ T cells (mostly gut-experienced) and the role of Interleukin-(IL)-7 and IL-7 receptor (CD127)-expressing T cells in thymectomized patients compared to young and old healthy controls. Results Decreased proportions of naive and CD31 + CD8+ T cells were demonstrated after thymectomy, with higher proliferative activity of CD127-expressing T cells and significantly shorter relative telomere lengths (RTLs) and lower T cell receptor excision circles (TRECs). Increased circulating CD103+ T cells and a skewed T cell receptor (TCR) repertoire were found after thymectomy similar to elderly persons. Naive T cells were influenced by age at thymectomy and further decreased by CMV. Conclusions After childhood thymectomy, the immune system demonstrated constant efforts of the peripheral CD8+ T cell compartment to maintain homeostasis. Supposedly it tries to fill the void of RTEs by peripheral T cell proliferation, by at least partly IL-7-mediated mechanisms and by proportional increase of circulating CD103+ T cells, reminiscent of immune aging in elderly. Although other findings were less significant compared to healthy elderly, early thymectomy demonstrated immunological alterations of CD8+ T cells which mimic features of premature immunosenescence in humans. KW - thymectomy KW - naive T cells KW - TRECs KW - TCR diversity KW - CMV KW - CD8 KW - telomeres Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146497 VL - 13 IS - 3 ER - TY - JOUR A1 - Zipfel, Julian A1 - Eyrich, Matthias A1 - Schlegel, Paul-Gerhardt A1 - Wiegering, Verena T1 - Disturbed B cell and DC-Homeostasis in Pediatric cGVHD Patients-Cocultivation Experiments and Review of the Literature JF - Clinics in Oncology N2 - B cells and DCs are suspected to play an important role in the pathogenesis of cGvHD, which is a serious complication of HSCT with high morbidity. It is characterized by immune responses of donor immune cells against recipient-derived antigens. athogenesis is not yet fully understood, however reconstitution of B cells after HSCT has similarities to physiologic ontogeny. Immunophenotyping and co-cultivation-experiments of B cells and DCs from pediatric patients with cGvHD as well as healthy donors were conducted. Significant differences between patients and healthy donors were observed with increased memory, transitional, CD69+ and CD86+ phenotype and lower levels of naïve B cells due to apoptosis. Co-cultivation revealed this to be primarily B cell-dependent without major effects of and with DCs. There was a decreased CD11c- phenotype in patients and less apoptosis of DCs. Our data suggest a disturbed homeostasis in B cells with increased memory phenotype in patients, whereas DCs could not influence these differences, therefore DCs are not imposing as promising targets. B cell-dependent approaches should be further investigated. KW - B cell Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147914 VL - 1 IS - 1097 ER -